
●

●

●

 to catch and

● Prevents leftover temp files.

● Improves script resilience.

● Can handle multiple signals.

 stops on first error.

catches undefined vars.

ensures pipeline errors propagate.

 and execute cleanup functions.

Use set -euo pipefail at the start to make the script exit on error, treat unset variables as

errors, and fail pipelines if any command fails.

1

DevOps — Shell Script (25 Questions)

Q1: Your bash deployment script sometimes fails silently when a command
in the middle errors out.

Q2: You need to trap cleanup commands if the script is interrupted (Ctrl+C).
Answer:

Answer:

Sample Points:

Use trap

 Sample Points:

Example Code:

Example Code:

-e

-u

-o pipefail

#!/bin/bash
set -euo pipefail

SIGINT SIGTERM

trap 'rm -f /tmp/mytmp; exit' INT TERM

 or

Use a lock file with

Sample Points:

 with

● Avoids race conditions.

● flock auto-releases on exit.

● Works across processes.

● Prevents downstream parsing errors.

● jq gives clear error messages.

● Use in CI pre-check.

 for validation.

 to prevent concurrent execution.

2

Q5: Need to safely handle file names with spaces in a loop.
Answer:

Q3: Script must validate a JSON file’s syntax before processing it.
Answer:

Q4: You want to ensure only one instance of the script runs at a time.

Answer:

Use jq empty
 Sample Points:

Use IFS and

Sample Points:

Example Code:

Example Code:

read -r

flock

jq empty config.json

python -m json.tool

find -print0 | xargs -0.

exec 200>/var/lock/myscript.lock
flock -n 200 || { echo "Script already running"; exit 1;}

● sets default;

 loops or

Check with parameter expansion.

Sample Points:

 throws error.

● Avoids word-splitting issues.

● Handles special chars in names.

● Prevents accidental file skipping.

 streaming.

● Line-by-line avoids memory issues.

● Streaming is faster for large files.

● Use grep before processing to filter.

3

Answer:
Use
Sample Points:

Answer:

Example Code:

Example Code:

:-

while read

:?

awk

grep "ERROR" /var/log/app.log | while read -r line; do
echo "$line"

done

find . -type f -print0 | while IFS= read -r -d '' file; do
echo "$file"

done

Q7: A script should fail if a required environment variable is missing.

Q6: Script must process a large log file efficiently without loading it fully
into memory.

●

●

 and

 and conditional logic.

● mktemp creates unique files.

● trap ensures cleanup.

● Avoids collision.

● Avoids duplicate daemons.

● Can match exact process name.

● Use exit codes for flow.

Ensures variables are set before use.

Avoids runtime surprises.

4

Answer:
Use mktemp
 Sample Points:

Answer:
Use pgrep
 Sample Points:

Example Code:

Example Code:

Example Code:

trap.

tmpfile=$(mktemp)
trap "rm -f $tmpfile" EXIT

: "${DB_HOST:?Need to set DB_HOST}"

Q8: Need to create a temp file that’s auto-deleted on script exit.

Q9: You want to check if another process is running before starting a new
one.

 variable or

 or GNU parallel.

● Lightweight timing.

● Good for profiling scripts.

● Can log to monitoring system.

● Improves performance for many items.

● Control parallelism with -P.

● Beware shared resource conflicts.

5

date +%s.

if pgrep -x "nginx" >/dev/null; then
echo "nginx running"

fi

start=$SECONDS
do work
echo "Elapsed: $((SECONDS - start))s"

cat list.txt | xargs -n1 -P4 ./worker.sh

Q10: Need to measure execution time of a script section.
Answer:

Q11: Need to run commands in parallel to speed up processing.
Answer:

Use SECONDS
 Sample Points:

Use xargs -P
 Sample Points:

Example Code:

Example Code:

 (netcat) or

● Portable OS detection.

● Switch-case for logic.

● Useful for cross-platform scripts.

● Retry logic avoids transient fails.

● Check port availability.

● Timeout to avoid hanging.

 in a loop with retries.

6

Q13: Need to handle different behavior depending on OS type.
Answer:

Q12: Script must verify network connectivity before proceeding.
Answer:

Use nc

 Sample Points:

Check uname or
Sample Points:

Example Code:

Example Code:

curl

/etc/os-release.

os=$(uname)
case "$os" in
Linux) echo "Linux detected";;

 Darwin) echo "macOS detected";;
esac

for i in {1..5}; do
nc -z db.example.com 5432 && break
sleep 5

done

 and

 and check response.

● Keeps logs organized.

● Useful in debugging pipelines.

● Combine if needed with &>.

 immediately after the command.

● Must check before running another command.

● Non-zero means failure.

● Use in conditionals.

7

Q14: A command’s stderr should be logged separately from stdout.
Answer:

Q15: Need to check exit code of the last command and act accordingly.
Answer:

Q16: Script must prompt user for confirmation before destructive action.
Answer:

Redirect with 2>

 Sample Points:

Check $?

 Sample Points:

Use read -p
 Sample Points:

Example Code:

Example Code:

1>.

cmd >out.log 2>err.log

if ! cp file1 file2; then
echo "Copy failed"

fi

●

●

●

 or

● Lightweight column extraction.

● Works for simple CSVs.

● Beware quoted fields with commas.

● Protects against accidental deletes.

● Default to “no” on invalid input.

● Timeout for automation.

Avoids runtime missing command errors.

Provide install hints.

Exit gracefully if missing.

8

Answer:
Use
Sample Points:

Answer:
Check with
Sample Points:

Example Code:

Example Code:

Example Code:

cut -d, -fN

command -v.

cut -d, -f2 data.csv

awk -F, '{print $N}'.

read -p "Delete all files? (y/N): " ans
[[$ans == "y"]] || exit 1

Q17: Need to extract specific column from CSV without a full parser.

Q18: Script must ensure required binaries are installed before running.

 and

 and optionally disown.

● Automates log rotation.

● Reduces disk usage.

● Schedule via cron/systemd timer.

● Avoids blocking script flow.

● Use logs to monitor background job.

● Track PID for control.

9

./long_task.sh &

-mtime gzip.

find /var/log -type f -mtime +7 -exec gzip {} \;

command -v jq >/dev/null || { echo "jq missing"; exit 1;}

Q19: Need to compress logs older than 7 days automatically.
Answer:

Q20: Script should run a background job and continue processing.
Answer:

Use find with

Sample Points:

Append &

 Sample Points:

Example Code:

Example Code:

●

●

●

● Preserves whitespace.

● Useful for packaging.

● Multiple --exclude allowed.

● Patterns support wildcards.

Avoids partial matches.

Anchors pattern to line boundaries.

Improves accuracy.

 for word match.

10

Q21: Need to match only exact string in
Answer:

 search.

Q22: Script must create a tarball excluding certain files.
Answer:

Q23: Need to parse a command’s output in a loop without losing spaces.
Answer:

grep

Use grep -x or
Sample Points:

Use
Sample Points:

Use
Sample Points:

Example Code:

Example Code:

tar--exclude.

grep -w

grep -x "ERROR" logfile

whileIFS= read -r line.

tar czf app.tar.gz --exclude='*.log' app/

● Works with pipelines.

● Avoids word splitting.

 with a safe format.

● Avoid spaces/colons in filenames.

● Include timezone if needed.

● Works in backups/logs.

11

Answer:
Use date

 Sample Points:

Example Code:

Example Code:

ts=$(date +%Y%m%d_%H%M%S)

df -h | while IFS= read -r line; do
echo "$line"

done

Q24: Script must generate a timestamp for filenames.

 for execution tracing.

● Prints each command to stderr.

● Useful for debugging complex flows.

● Turn off with set +x.

● Use wait_for before gather_facts.

● Ensure SG allows SSH from control node.

12

This can happen if the new EC2 instances aren’t ready for SSH yet or have restrictive SG rules.
Add a wait_for task to ensure port 22 is open before gathering facts, and verify
ansible_user matches the AMI’s default.

Q1: You run an Ansible playbook to provision EC2 instances, but some
tasks hang indefinitely on SSH.

Q25: You want to debug each command before it executes in the script.
Answer:

Answer:

Use set -x
 Sample Points:

Sample Points:

Example Code:
 set -x

DevOps — Ansible (25 Questions)

● Use correct remote user for AMI type.

● Idempotency avoids unnecessary changes.

● Use correct module for text changes.

● Compare generated vs. target file.

 module to check and conditionally run the next task with

The task is not idempotent — for file edits, use /
and for templates, use template which only updates if checksums differ.

13

 with proper regex,
Answer:

Answer:
Use stat

 Sample Points:

Sample Points:

Example Code:

Example Code:

- name: Ensure line present
lineinfile:
path: /etc/sysctl.conf
regexp: '^net.ipv4.ip_forward'
line: 'net.ipv4.ip_forward=1'

- name: Wait for SSH
wait_for:
host: "{{ inventory_hostname }}"
port: 22 delay: 5 timeout: 300

when.

lineinfile blockinfile

Q3: A task needs to run only when a file exists on the target host.

Q2: Your Ansible run modifies files every time even though the contents
haven’t changed.

● stat returns exists flag.

● Avoid failing on missing files.

● Clean conditional syntax.

● Cloud images (minimal) may lack Python.

● raw bypasses Python requirement.

● Install python3 early in play.

 module to install Python first, as Ansible modules need Python.

 for the vars file, and store the vault password outside VCS.

14

ansible-vault encrypt

 - stat: path=/etc/my.conf

register: conf_file

- name: Do something
command: cat /etc/my.conf
 when: conf_file.stat.exists

- name: Install Python
raw: sudo apt-get update && sudo apt-get install -y python3

Answer:
Use raw

 Sample Points:

Answer:
Use
Sample Points:

Example Code:

Example Code:

Q5: You want to encrypt sensitive variables in your repo.

Q4: Playbook fails on some hosts due to Python not being installed.

●

●

●

 param in

Skips task if output already exists.

Avoids redundant installs.

Faster reruns.

● Never commit plain secrets.

● Vault key in CI/CD via secret store.

● Can encrypt single vars or whole files.

● Use gathered facts for OS-specific logic.

● Avoid hardcoding hostnames.

● Keep tasks portable with conditionals.

 or register a state flag file.

15

Answer:
Use
Sample Points:

Answer:
Use creates
 Sample Points:

Example Code:

Example Code:

Example Code:

command

when: ansible_facts['os_family'] == "RedHat"

when:ansible_facts['os_family'] == 'RedHat'.

ansible-vault encrypt group_vars/prod/secrets.yml

Q7: Playbook must be rerun without re-executing heavy install tasks.

Q6: You need to run a specific set of tasks only on RHEL-based hosts.

aws_ec2Use the
file.

● Roles promote reusability.

● Avoids duplicating tasks.

● Makes plays cleaner.

● No need for static host files.

● Tag filtering for host groups.

● Refresh inventory automatically.

Use roles to package tasks, vars, handlers, and templates together.

Sample Points:

 dynamic inventory plugin and configure AWS credentials in env/credentials

16

- hosts: web

plugin: aws_ec2
regions:
- ap-south-1

keyed_groups:
- key: tags.Name

- name: Install app
command: /opt/install.sh creates=/opt/app_installed.flag

Q9: Need to reuse task logic across multiple playbooks.

Answer:

Q8: You want to dynamically pull inventory from AWS EC2.

Answer:

SamplePoints:

Example Code:

Example Code:

●

●

●

Avoids restarting running services.

service_facts gathers all services.

Improves idempotency.

● hostvars is a dictionary of all hosts.

● Requires both hosts in same play context.

● Useful for leader-worker configs.

 and conditionally start.

 to access facts/vars from other hosts.

17

roles:
-nginx_setup

service_facts

db_host: "{{ hostvars['db1'].ansible_host }}"

- service_facts:
- service:

name: nginx
state: started

when: "'nginx' not in services or services['nginx'].state !=
'running'"

Q11: Task needs to run only if a service is not already running.
Answer:

Q10: Playbook must read a variable from another host in the same play.
Answer:

Use hostvars
 Sample Points:

Check with
Sample Points:

Example Code:

Example Code:

 with Jinja templates.

● set_fact is dynamic at runtime.

● Useful for computed values.

● Facts persist for rest of play.

● Ensures all hosts stop on failure.

● Useful for critical infra changes.

● Avoid partial config states.

 at play level.

18

Q14: Playbook fails on missing variable in a template.

Q12: Playbook execution must stop if a critical task fails.
Answer:

Q13: Need to set variables that are evaluated only at execution time.
Answer:

Use
Sample Points:

Use set_fact
 Sample Points:

Example Code:

Example Code:

- hosts: all
any_errors_fatal: true

any_errors_fatal: true

- set_fact:
backup_path: "/backups/{{ inventory_hostname }}/{{

ansible_date_time.date }}"

 with

 and

● default avoids undefined var crash.

● Set safe defaults.

● Reduces fragile templates.

● become allows privilege escalation.

● Works for sudo or su target.

● Avoids separate SSH creds.

Use group_vars for environment-specific vars.

Sample Points:

 filter in template to avoid undefined errors.

19

Answer:
Set
Sample Points:

Answer:
Use become
 Sample Points:

Answer:

Example Code:

Example Code:

jinja2_native=True

become_user.

- name: Run as postgres
command: psql -c "SELECT 1"
become: true
become_user: postgres

{{ some_var | default('N/A') }}

default

Q16: Deploying app needs different config files per environment.

Q15: Need to run some tasks as another Linux user without switching SSH
login.

●

●

 or

● end_play stops entire play.

● pause allows manual checks.

● Useful in staging/testing.

package is generic across distros.

Avoids duplicate tasks per OS.

● Separate vars by inventory group.

● Avoids conditionals inside playbooks.

● Cleaner separation of configs.

 module with variables mapping per OS.

 for interactive debug.

20

Answer:
Use
Sample Points:

Answer:
Use package
 Sample Points:

Example Code:

Example Code:

group_vars/
prod.yml
dev.yml

- meta: end_play

meta: end_play pause

Q17: Playbook should stop at a certain task for debugging.

Q18: Need to install packages on both Debian and RHEL hosts with one
task.

●

●

Avoids hardcoded creds.

IAM role least-privilege.

● Use var mapping for names.

Handlers run at the end of plays unless

Sample Points:

● flush_handlers triggers early.

● Handlers run once per play.

● Useful for service restarts mid-play.

 lookup plugin with IAM role permissions.

 is used.

21

Answer:

Answer:
Use aws_ssm
 Sample Points:

Example Code:

Example Code:

- meta: flush_handlers

vars:
pkg_name:
RedHat: httpd
Debian: apache2

- package:
name: "{{ pkg_name[ansible_os_family] }}"
state: present

meta: flush_handlers

Q19: A handler is not running even though task notifies it.

Q20: Need to securely fetch secrets from AWS SSM in playbook.

●

●

●

●

 and

Pull secrets at runtime.

Tags speed up testing.

Skip irrelevant tasks.

Tag logically by function.

● Disables fingerprint prompt.

● Security trade-off: trust host blindly.

● Prefer adding host key to known_hosts.

 with well-tagged tasks.

 in ansible.cfg for automation (with caution).

22

Answer:
Use --tags
 Sample Points:

Answer:
Set
Sample Points:

Example Code:

Example Code:

Example Code:

--skip-tags

host_key_checking = False

ansible-playbook site.yml --tags "nginx,deploy"

db_pass: "{{ lookup('aws_ssm', '/prod/db_pass', region='us-east-1')
}}"

Q22: Playbook fails due to SSH host key verification prompt.

Q21: Limit playbook run to a subset of tasks for quick testing.

● Controls execution scope.

● Avoids duplicate operations.

● Index 0 is first host.

Register command output and use

Sample Points:

● Register stores task output.

● Use stdout_lines for list processing.

● set_fact makes it available globally.

23

[defaults]
host_key_checking = False

set_fact.

when: inventory_hostname == groups['web'][0]

- command: hostname
register: host_out

- set_fact:
fqdn: "{{ host_out.stdout }}.example.com"

when: inventory_hostname == groups['web'][0].

Q23: Need to run a task only on first host in a group.
Answer:

Q24: A variable value needs to be computed using output from a previous
command.

Answer:

Use
Sample Points:

Example Code:

Example Code:

 module with

● Ensures idempotent creation.

● Sets ownership and mode.

● Works for nested paths.

● Outdated base = merge noise.

24

This can happen if the branch was created from an outdated base or if a merge was done with
incorrect ancestry. Run git fetch --all, then rebase onto the latest main to replay only
your commits. For large drift, create a new branch from main and cherry-pick your changes.

Q1: A feature branch shows hundreds of unrelated changes in
after merging main.

Q25: Need to ensure a directory exists with specific permissions.
Answer:

Answer:

Use file

 Sample Points:

Sample Points:

Example Code:

- file:
path: /opt/data
state: directory
owner: appuser
mode: '0750'

state: directory.

DevOps — Git (25 Questions)

git diff

● History rewrite required.

● Rotate secrets even if removed.

● Inform collaborators to re-clone.

● Rebase to clean commit history.

● Cherry-pick for precise isolation.

Use git filter-repo or
remote, and rotate credentials immediately.

● High-churn files → constant conflicts.

 to remove them from history, force-push to

This is usually due to parallel changes in high-churn files. Apply a consistent merge strategy
(ours, theirs), or split config into smaller files. Encourage feature toggles to reduce long-lived
branches.

25

Answer:

Answer:

Sample Points:

Sample Points:

Example Code:

Example Code:

git checkout feature
git fetch origin
git rebase origin/main

BFG Repo-Cleaner

git filter-repo --path secret.txt --invert-paths
git push origin --force

Q2: You accidentally committed secrets to Git and pushed to remote.

Q3: Merge conflicts keep recurring in the same file across multiple sprints.

Use
target.

● Repo migration resets ancestry.

● Merge histories once, then clean.

● Use tags to mark migration point.

This happens when histories differ. Use
during the first merge, then align branches.

● Modularize files to isolate changes.

● Short-lived branches minimize pain.

 to squash commits, or

● Squash for cleaner history.

● Rebase interactive for fine control.

● Squash merge preserves branch diff only.

 when merging into

26

Answer:

Answer:

Sample Points:

Sample Points:

Example Code:

Example Code:

Example Code:

git rebase -i

git merge -X theirs feature

git pull origin main --allow-unrelated-histories

git merge --squash

git pull --allow-unrelated-histories

Q4: shows “unrelated histories” after repo migration.

Q5: You need to squash all commits in a feature branch before merging.

git pull

● Back up before reset.

● Divergence due to force push.

● Use reflog if needed.

● Sparse checkout saves bandwidth.

● Useful for monorepos.

● Avoid full clone if unnecessary.

Use sparse checkout to pull only that folder.

Sample Points:

Fetch latest, back up your branch, then hard reset to remote main. Reapply your changes on
top.

27

git rebase -i HEAD~5

git fetch origin
git checkout main
git reset --hard origin/main

git sparse-checkout init --cone
git sparse-checkout set folder/path

Q7: A teammate force-pushed

Q6: You cloned a large repo but only need a single folder.

Answer:

 and you have diverging histories.

Answer:

Sample Points:

Example Code:

Example Code:

main

● GPG key for identity assurance.

● Repo policy enforces signing.

● Protects against commit spoofing.

● LFS stores binaries outside Git history.

● Keeps repo lightweight.

● Requires LFS installed on clients.

Use Git LFS for binaries, migrate existing ones with

Sample Points:

Create annotated tags for release metadata. Push explicitly to remote.

Sample Points:

Generate GPG key, add to Git config, and enforce signed commits in repo settings.

Sample Points:

28

Q10: Need to tag a release and push it to remote.

Answer:

Q9: Large binary files cause repo size to explode.

Answer:

Q8: Need to sign all commits with GPG for compliance.

Answer:

Example Code:

Example Code:

git lfs install
git lfs track "*.zip"

git config --global user.signingkey <KEY_ID>
git commit -S -m "Signed commit"

git lfs migrate.

Restrict pipeline triggers in

Sample Points:

● Revert is safe on shared branches.

● Doesn’t rewrite history.

● Reapply later if needed.

● Branch filters reduce wasted CI runs.

● Config in pipeline definition.

● Annotated tags store message/author.

● Push tags explicitly.

● Use semantic versioning.

 to create a new commit undoing changes.

 or GitHub Actions workflows with branch filters.

29

Answer:
Use
Sample Points:

Answer:

Example Code:

Example Code:

git revert

git revert <commit_hash>

.gitlab-ci.yml

git tag -a v1.2.0 -m "Release 1.2.0"
git push origin v1.2.0

Q11: You need to revert a single commit in the middle of history without
removing others.

Q12: CI pipeline triggers on every commit to any branch, but you only want
it on main and dev.

●

Remove from index, add to
history.

Improves build efficiency.

● Cherry-pick applies single commit.

● Resolve conflicts manually if needed.

 for the specific commit.

● Remove and ignore to prevent recurrence.

● History rewrite for permanent removal.

● Consider LFS for large assets.

, and commit removal. For complete removal, rewrite

30

Answer:

Sample Points:

Answer:
Use
Sample Points:

Example Code:

Example Code:

on:
push:
branches:

- main
- dev

git cherry-pick

git rm --cached big.log
echo "big.log" >> .gitignore

.gitignore

Q14: Need to apply a fix from to an older release branch.

Q13: Accidentally committed large log files you don’t want in repo at all.

main

●

Create a patch with

Sample Points:

Preserve commit metadata.

● Format-patch preserves metadata.

● Works across unrelated repos.

● Keep patch files in secure storage.

● Binary conflicts require manual choice.

● Ours/theirs for conflict resolution.

● Commit after resolving.

 and apply with

Binary files can’t be merged automatically. Decide which version to keep using
--ours or --theirs.

31

Answer:

Sample Points:

Answer:

Example Code:

Example Code:

Example Code:

git format-patch -1 <commit>

git checkout release-1.0
git cherry-pick <commit_hash>

git format-patch

git checkout --ours path/file.bin
git add path/file.bin

git am.

git checkout

Q16: You need to apply the same commit to multiple repos.

Q15: Git merge shows binary files as conflicts with no merge tool option.

Ensure you clone with
--recursive.

● Use platform RBAC.

● Deploy keys for automation.

● Never give write if not required.

 or run

● Submodules need explicit init.

● Recursive flag fetches nested submodules.

● Keep submodules synced.

 role in hosting platform or create a deploy key with read permissions only.

32

git am < patchfile

--recursive

git clone --recursive repo.git

ssh-keygen -t rsa -b 4096 -C "read-only"

git submodule update --init

Q17: Developer needs read-only access to repo.
Answer:

Q19: Need to rename a branch both locally and remotely.

Q18: A submodule commit is missing in remote after cloning.

Answer:

Grant Read

 Sample Points:

Sample Points:

Example Code:

Example Code:

, run

● Push new branch, delete old one.

● Update tracking branch config.

● Inform collaborators.

Example Code:

● Bisect binary search speeds debugging.

● Requires reproducible test.

● Automate with git bisect run.

Mark known good and bad commits, test each step.

Sample Points:

Rename locally, push to remote, and delete old remote branch.

Sample Points:

, and commit changes.

33

Answer:
Update
Sample Points:

Answer:

Answer:

Example Code:

.gitmodules

git bisect start
git bisect bad HEAD
git bisect good v1.1

git branch -m old new
git push origin new
git push origin --delete old

git submodule sync

Q21: CI build fails because

Q20: Git bisect required to find commit that introduced a bug.

 points to wrong URL. .gitmodules

● Sync updates local config.

● Commit .gitmodules change.

● Ensure URL works for CI.

● Rebasing avoids merge commits.

● Cleaner history for review.

● Stash to free working dir quickly.

● Pop restores + removes from stash.

● Multiple stashes possible.

 to save uncommitted work, apply hotfix, then

 to replay commits on top of fetched branch.

34

Answer:
Use
Sample Points:

Answer:
Use
Sample Points:

Example Code:

Example Code:

git stash

git stash #
hotfix work
git stash pop

git pull --rebase

git submodule sync --recursive

git stash pop.

Q22: Need to temporarily stash changes for a quick hotfix.

Q23: Commit history is cluttered with merge commits from frequent syncs.

●

●

●

Prune stale remote branches with

Sample Points:

● Conflicts resolved as usual.

● Prune removes tracking refs.

● Delete locals to free space.

● Review before deleting.

Amend for local fix.

Force push to update remote.

Inform collaborators.

. Force-push if already pushed.

, delete local copies.

35

Answer:
Use
Sample Points:

Answer:

Example Code:

Example Code:

Example Code:

git fetch --prune
git branch -d old-branch

git pull --rebase origin main

gitcommit --amend --author

git fetch --prune

git commit --amend --author="New Name <email>"

Q25: Repo size is huge due to unused branches.

Q24: You need to change the author of the last commit.

●

●

●

● Large logs are common culprit.

● Use du to locate offenders.

ICMP works → kernel/network up.

SSH port/service may be blocked/stopped.

Fail2ban or security group rules can block.

 , check
. Remove old journal logs (

 for oversized logs,

36

Check if SSH daemon is down or blocked by firewall. Use console access (cloud provider serial
console) to log in and inspect systemctl status sshd. If sshd is running, check ss -tnlp
| grep :22 and firewall rules (iptables -L or firewalld). Also inspect fail2ban for IP
bans.

DevOps — Linux (25 Questions)

Q2: Disk usage on
Answer:
 Identify large files with du -sh /var/*|sort-h

 hits 100% causing app crashes.

Q1: A production server is unresponsive over SSH, but ICMP ping works.

Answer:

Sample Points:

Sample Points:

Example Code:

sudo systemctl status sshd
sudo ss -tnlp | grep :22
sudo iptables -L -n

rotate/compress logs via logrotate

--vacuum-time=7d).

/var/log
journalctl

/var

●

●

●

Run mtr or

for NIC resets.

Identify heavy process.

Adjust priority with

Kill only if safe.

● MTR for real-time path analysis.

● Check NIC stats for errors.

● Could be external ISP hop.

● Configure logrotate to prevent repeats.

Find offending process with top or

process or kill it. Investigate logs to see why it misbehaved.

 to detect hop causing delay. Check

. Renice

 for interface errors and

37

Answer:

Answer:

Sample Points:

Sample Points:

Example Code:

Example Code:

Example Code:

dmesg
traceroute

sudo renice 10 -p <PID>

mtr --report google.com

renice.

sudo du -sh /var/* | sort -h
sudo journalctl --vacuum-time=7d

ethtool

ps-eopid,ppid,cmd,%cpu --sort=-%cpu

Q4: Network latency spikes intermittently to an external service.

Q3: CPU usage is maxed out by a runaway process; system is sluggish.

● Cron needs absolute paths.

● Minimal environment in cron.

● Check execution permissions.

Check cron logs (
variables are absolute. Cron uses minimal

● fail2ban blocks repeated offenders.

● Reduce max auth tries.

● Keep logs clean for real events.

), ensure script path and environment
, so commands must be full path.

Enable fail2ban with sshd jail, set MaxAuthTries in sshd_config, and consider moving SSH

to a non-standard port (security by obscurity + logging).

38

sudo ethtool -S eth0

sudo apt install fail2ban
sudo systemctl enable --now fail2ban

grep CRON /var/log/syslog
PATH

* * * * * /usr/bin/python3 /opt/scripts/task.py

Q6: SSH brute-force attempts are filling logs.

Q5: Cron job didn’t execute, but works manually.

Q7: A service doesn’t start on boot but runs fine manually.

Answer:

Answer:

Sample Points:

Sample Points:

Example Code:

Example Code:

Enable with
correct

● Check immutable attribute.

● CM tools can reset perms.

● Edit source templates.

Likely due to immutable attribute (
Remove immutable bit (

● Unit must have enable target.

● Boot-time deps can delay start.

● Journal logs reveal cause.

Check if upstream app service is running (
in Nginx config, test with

) or config management (e.g., Ansible, Puppet).
) or update CM template.

 section in unit file has
for boot-time errors.

39

), correct upstream socket/port

Answer:

Answer:

Answer:

SamplePoints:

Sample Points:

Sample Points:

Example Code:

Example Code:

lsattr /path/file
sudo chattr -i /path/file

sudo systemctl enable myservice

lsattr
chattr -i

systemctl status
curllocalhost:port.

systemctl enable servicename, ensure [Install]
WantedBy. Check journalctl -u servicename

Q9: Web app returns 502 after Nginx restart.

Q8: File permission changes revert after reboot.

●

●

●

● 502 = upstream unreachable.

● Confirm backend service status.

● Port/socket config must match.

● Optimize resolver order.

● Test with dig to isolate slowness.

SELinux enforces port context.

Add port mapping for new services.

Audit logs guide rules.

Use
boolean if service-specific. Check audit logs for denials.

Check /etc/resolv.conf order, ensure fastest DNS servers, and test with
Disable reverse DNS lookups in SSH (UseDNS no).

 to allow, or set SELinux

40

Answer:

Answer:

Sample Points:

Sample Points:

Example Code:

Example Code:

curl -v http://127.0.0.1:5000

semanageport-a-thttp_port_t-ptcp 8080

sudo semanage port -a -t http_port_t -p tcp 8080

dig +trace.

Q11: Slow DNS resolution on server.

Q10: SELinux blocks app from binding to port 8080.

● Docker cache can bloat quickly.

● Move to dedicated disk.

● Schedule prune jobs.

● System won’t authenticate without it.

● Restore quickly from backup.

● Verify UIDs match actual files.

● Disable unnecessary reverse lookups.

Prune unused images/volumes, move Docker data root via
symlink or mount to larger volume.

 and

41

Restore from backup or copy from a similar system, adjust UIDs/GIDs. Boot into rescue mode if
needed.

Answer:

Answer:

Sample Points:

Sample Points:

Example Code:

Example Code:

Example Code:

dig example.com

sudo mkdir /mnt/docker
{"data-root": "/mnt/docker"}

cp /mnt/backup/etc/passwd /etc/passwd

/etc/docker/daemon.json

Q13: Root disk filling with

Q12: User accidentally deleted /etc/passwd.

/var/lib/docker.

Check vm.swappiness value (

Investigate memory leaks with

● Dstate = I/O wait.

● Investigate disk/NFS mounts.

● Might require hardware fix.

● Adjust swappiness for usage pattern.

● Swap use with free RAM often config issue.

● Check per-process memory.

Caused by kernel waiting on I/O. Check disk health with
errors. Usually hardware/storage problem.

, inspect dmesg for I/O

). Lower to 10-20 to prefer RAM.

42

Q14: Process hangs in

Q16: High load average but low CPU usage.

 state (uninterruptible sleep).

Q15: Swap usage grows constantly, even with free RAM.

D

Answer:

Answer:

Sample Points:

Sample Points:

Example Code:

Example Code:

sudo smartctl -a /dev/sda

sudo sysctl -w vm.swappiness=10

sysctl vm.swappiness
smem.

smartctl

● NTP for accuracy.

 or

● Rescan before reboot.

● Partition and format.

● Update /etc/fstab.

Rescan SCSI bus (
Partition with and mount.

● Load includes I/O wait.

● Identify bottleneck device.

● Use iostat for detailed view.

Likely I/O wait or many blocked processes. Check

Sample Points:

, look for

), check hypervisor time sync.

 and await.

) or reboot.

43

Answer:

Answer:
Enable NTP (
 Sample Points:

Answer:

Sample Points:

Example Code:

Example Code:

iostat -xz15

chronyd

sudo fdisk /dev/sdb

systemd-timesyncd

iostat -xz %util

echo"- - -" > /sys/class/scsi_host/hostX/scan
fdisk

Q18: System time drifts in VM.

Q17: After adding new disk, it’s not visible in /dev.

●

●

Ensure directory has

Sample Points:

 and

VM tools can sync time too.

Avoid both sources conflicting.

● setgid preserves group ownership.

● Check umask settings.

● Group perms must be correct.

● Predictable names can change after NIC add/remove.

● Use persistent naming via udev rule.

● Update configs accordingly.

 bit so new files inherit group.

Disable predictable interface names or update systemd service to use new name. Use
networkctl to see current mapping.

44

Answer:

Answer:

Sample Points:

Example Code:

Example Code:

Example Code:

chmod 2775 /shared

g+w setgid

sudo timedatectl set-ntp true

Q19: User can’t write to shared directory despite group membership.

Q20: Network service fails to bind after reboot because interface name
changed.

● Cron env minimal.

● Source ~/.profile if needed.

● Explicitly set PATH.

● Zombies don’t consume CPU.

● Restart parent to clear.

● Orphan adoption by init reaps.

Export needed vars in script or source profile file at start. Cron has minimal env.

Sample Points:

Zombies are dead processes not reaped by parent. Identify parent PID, restart it if safe.

Sample Points:

45

ps -el | grepZ

#!/bin/bash
. /home/user/.profile

sudo ln -s /dev/null /etc/udev/rules.d/80-net-setup-link.rules

Q22:

Answer:

 shows zombie processes.

Q23: Ulimit prevents app from opening more than 1024 files.

Q21: Script fails in cron but works manually due to environment vars.

Answer:

Example Code:

Example Code:

top

●

 in

● Validate repo URL.

● Refresh metadata.

● Disable if not needed.

Auth log records sudo usage.

● Raise limits in limits.conf.

● Check PAM session files.

● Apply at systemd service level.

 or journal with

Check repo URL in sources, refresh cache, disable failing repo temporarily.

Sample Points:

 and ensure PAM configs load it.

46

Answer:
Increase
Sample Points:

Answer:

Answer:
Check
Sample Points:

Example Code:

Example Code:

nofile

LimitNOFILE=65535

/var/log/auth.log

/etc/security/limits.conf

sudo apt update
sudo yum --disablerepo=badrepo install pkg

journalctl _COMM=sudo.

Q24: Package install fails due to broken apt/yum repo.

Q25: Need to audit recent sudo commands run by a user.

● Use journalctl for query.

● Track time + command run.

● Never delete lock unless sure it’s stale.

● DynamoDB item removal unblocks state.

● Use -lock-timeout for busy teams.

If using an S3 backend with DynamoDB lock table, manually remove the stale lock item in
DynamoDB . Then re-run. Consider
-lock-timeout to wait for locks in future.

47

Answer:

Example Code:

Example Code:

only afterconfirmingnootherappliesarerunning

SamplePoints:

sudo journalctl _COMM=sudo

aws dynamodb delete-item --table-name tf-lock --key '{"LockID": {"S":
"prod/terraform.tfstate-md5"}}'

DevOps — Terraform (25 Questions)

Q1: Terraform apply in prod fails with
another apply is in progress, but that process crashed.

Q2: You must migrate manually created AWS resources into Terraform
without downtime.

 because Error locking state

●

●

●

●

●

●

Run
revert. Use

Plan → decide to update config or infra.

State rm for unmanaged resources.

Avoid console edits in IaC environments.

Adjust CIDRs to non-overlapping ranges or use

Import keeps IDs; no recreation.

Align config with live settings before apply.

Plan first to detect drifts.

 to see differences. If drift is intended, update
for resources no longer managed.

 function for consistent

 files; if not, apply to

Use terraform import to bring existing resources into state, then run terraform plan to

ensure config matches reality. Avoid changing properties that would force replacement unless
planned.

48

Answer:

Answer:

Answer:

Sample Points:

SamplePoints:

Example Code:

Example Code:

terraform plan
terraform state rm

cidrsubnet()

terraform state rm aws_security_group.unmanaged

terraform import aws_s3_bucket.mybucket my-bucket-name

.tf

Q3: Remote backend state on S3 shows drift after manual console
changes.

Q4: Terraform plan for a new VPC fails due to CIDR block overlap.

Check if immutable properties (e.g.,

only.

● Prevent destroy for prod DBs.

● Review module changelog before apply.

● Change params in maintenance window.

● Overlap blocks VPC creation.

● Derive subnets to avoid manual mistakes.

● Centralize network config.

derivation. In multi-env setups, store base CIDR in a shared tfvars file.

 in some engines) changed. Use
and perform updates with in-place changes

Separate state files per environment instead of relying solely on workspaces, or use different
backend key paths. Enforce var.environment as a required var.

49

Answer:

Answer:

Sample Points:

Sample Points:

Sample Points:

Example Code:

Example Code:

lifecycle {
prevent_destroy = true

}

cidrsubnet(var.vpc_cidr, 4, count.index)

allocated_storage
lifecycle{prevent_destroy = true }

Q6: Terraform workspace accidentally applied dev resources.

Q5: Applying a module update forces recreation of critical RDS instance.

prod

●

●

●

● Workspaces not isolation alone.

● Different backend keys safer.

● Always pass environment explicitly.

● CI pipeline must set creds securely.

Lifecycle protect critical shared assets.

Separate state files for shared vs env-specific.

IAM denies for delete API calls in shared.

Add prevent_destroy lifecycle on shared resources, and separate shared infra into its own

state. Enforce tagging and IAM policy to block deletes in shared projects.

50

Inject creds via environment variables or use workload identity federation (OIDC) for ephemeral
credentials in CI. Avoid hardcoding in tfvars.

Answer:

Answer:

Sample Points:

Sample Points:

Example Code:

Example Code:

backend "s3" {
key = "prod/terraform.tfstate"

}

lifecycle { prevent_destroy = true}

Q7:

Q8: Applying infra in CI/CD fails due to missing provider creds.

 in staging deleted a shared VPC used by prod. terraform destroy

●

Pin provider versions in

Sample Points:

● Mark vars sensitive.

● Encrypt state at rest.

● Restrict read access.

Example Code:

● Prefer OIDC over long-lived keys.

● Use TF_VAR_ prefix for vars.

Pin provider version for consistency.

 and commit

State stores all computed values. Use sensitive = true in variables, enable state

encryption (S3 SSE or Vault backend), and limit state access via IAM.

51

 to repo.

variable "db_password"{
 type = string
 sensitive = true
}

required_providers

export AWS_ROLE_ARN=arn:aws:iam::123:role/tf-role
terraform apply

.terraform.lock.hcl

Answer:

Sample Points:

Answer:

Example Code:

Q9: Terraform state file contains secrets.

Q10: Resource creation fails due to provider version mismatch in team
members’ local setups.

●

●

●

● Keep state versioning enabled.

Target only changed modules.

Split state for scale.

Provider filters speed up queries.

● Lock file ensures deterministic builds.

● Upgrade via

Check state history in backend (e.g., S3 versioning), download older state, and
apply with matching config.

Use -target for scoped applies when safe, split resources into multiple states/modules, and

enable provider-side filtering.

52

terraform plan -target=module.network

terraforminit-upgrade.

terraform {
required_providers {
aws = { source = "hashicorp/aws", version = "~> 5.0"}

 }
}

terraform

Answer:

Answer:

Sample Points:

Sample Points:

Example Code:

Example Code:

Q11: Terraform plan is slow due to thousands of resources.

Q12: Need to roll back to a previous infrastructure version after failed
deployment.

Add pre-commit hook to run

Sample Points:

● Pre-commit enforces formatting.

● CI can also check.

● Consistent style reduces churn.

● Guardrails + detection for manual drift.

● CI as only entrypoint for IaC changes.

● IAM denies outside Terraform role.

● Rollback means re-applying older config.

● Document rollback procedure.

 and fail commit on diff.

53

Use AWS Config or Cloud Custodian to detect manual resources, and enforce creation via CI
pipelines with Terraform. Block manual create API via IAM condition on aws:ViaAWSService.

Answer:

Sample Points:

Answer:

Example Code:

Example Code:

Example Code:

terraform fmt -recursive

aws s3 cp s3://bucket/prod.tfstate version-id=xyz ./terraform.tfstate

"Condition":{"StringNotEquals":{"aws:CalledVia":"cloudformation.amazon
aws.com"}}

Q14: Team often forgets to run

Q13: Developers must create S3 buckets only via Terraform, never
manually.

 before committing. terraform fmt

 with

● Split large applies.

● Extend token lifetime.

● Orchestrate apply steps.

● Combine env + random for uniqueness.

● Avoid collisions in global namespaces.

● Keep naming convention consistent.

 and random provider (

Use short modules with smaller applies or refresh creds via token renewal during apply. For
AWS, use session durations > apply time.

) to suffix names.

54

var.environment

#!/bin/sh
terraform fmt -recursive -check || exit1

aws sts assume-role --duration-seconds 3600

resource "aws_s3_bucket" "b" {
bucket = "${var.environment}-${random_id.suffix.hex}"

}

random_id

Q16: Provider credentials expire mid-apply for long deployments.

Q15: Need to generate unique names for resources across environments.
Answer:

Answer:

Use format()
 Sample Points:

Sample Points:

Example Code:

Example Code:

●

●

●

 provisioner with

● Ignore tag changes for immutable IDs.

● Helps for vendor-managed resources.

● Still apply tags manually if needed.

 in lifecycle.

Provisioners last resort.

Idempotent scripts avoid drift.

Prefer user_data/cloud-init when possible.

. Keep idempotent.

55

Q17: Need to avoid recreating immutable resource IDs when only tags
change.
Answer:

Q18: Must run a script after resource creation but before marking apply
complete.
Answer:

Use
Sample Points:

Use
Sample Points:

Example Code:

Example Code:

local-exec

lifecycle {
ignore_changes = [tags]

}

ignore_changes = [tags]

when = create

provisioner "local-exec" {
when = create
command = "echo ${self.id} >> created.log"

}

● Break cycles into stages.

● Use depends_on explicitly.

● Avoid mutual references.

Mark variables as sensitive and use
values.

● Sensitive vars mask in logs.

● Use planfile to hide secrets.

● Avoid -var with secrets inline.

 in provider config (AWS >=3.38), or a tagging module. Validate via
+ custom rules.

 without showing

Break the cycle by creating one with minimal config, outputting an ID, and updating the other in
asecond apply. Or use depends_on to force order.

56

Q21: Must ensure all resources are tagged with
Answer:

 and

Q19: Two resources depend on each other cyclically in config.

Q20: Terraform in CI/CD must plan without exposing secrets in logs.

Answer:

Answer:

Sample Points:

Sample Points:

Sample Points:

Example Code:

Example Code:

Use default_tags
terraform validate

terraform plan -out=planfile

depends_on = [aws_security_group.sg]

terraform plan -out=planfile

Owner Environment.

●

●

●

Alias providers (
resources/modules.

● Default tags enforce globally.

● Validation prevents missing tags.

● Use TF Cloud policy sets.

Aliases for multi-provider configs.

Pass providers explicitly to modules.

Keep creds separate per alias.

● Migrate state without losing resources.

) and pass into

 after defining new backend block.

57

Answer:

Sample Points:

Answer:
Run
Sample Points:

Example Code:

Example Code:

terraform init -migrate-state

provider "aws" { alias = "east" }

provider "aws" { alias = "east" region = "us-east-1"}

provider "aws" {
default_tags {
tags = { Owner = var.owner, Environment = var.environment}

 }
}

Q23: Remote state backend migration from local to S3.

Q22: Multi-cloud project requires different providers in same root module.

●

●

Backend config in .tf file.

Plan after migration to verify.

● Manual gate before prod apply.

● PR review ensures compliance.

● Use TF Cloud policy-as-code.

Refactor incrementally:

1. Extract a resource to new module.

2. Use terraform state mv to match new address.

3. Plan/apply with no changes. Repeat.

Use TF Cloud/Terragrunt with run tasks, or CI pipeline with approval stage before
prod workspace.
Sample Points:

 in

58

Answer:

Answer:

Sample Points:

Example Code:

Example Code:

- stage: Approval
jobs:

- manual: true

terraform init -migrate-state

apply

Q24: Must enforce no in prod without PR approval.

Q25: Need to refactor large root module into reusable modules without
downtime.

terraform apply

● State mv avoids recreation.

● One resource/module at a time.

● Validate after each step.

● Prune Docker artifacts periodically.

● Workspace cleanup plugin.

● Larger disk or separate volume for

Check workspace cleanup policies — old builds might be consuming disk. Enable
Cleanup post-build, prune unused Docker images/volumes (), and
consider moving Docker storage to a larger disk. For multi-tenant agents, enforce quota per
build.

59

Answer:

Sample Points:

Example Code:

Example Code:

post {
always {

cleanWs()
sh 'docker system prune -af'

}

/var/lib/docker.

terraform state mv aws_s3_bucket.old module.new.aws_s3_bucket.old

Workspace
docker system prune

DevOps — Jenkins (25 Questions)

Q1: A Jenkins pipeline intermittently fails during
space left on device” on the agent node.

 with “no docker build

● Explicit version tag avoids stale refs.

● Clear cache when updating.

● Avoid master default for stability.

● Avoid mixed triggers (webhook + polling).

● Audit SCM webhook configuration.

● Use a single trigger source.

Likely duplicate webhooks or SCM polling enabled alongside webhooks. Remove extra
webhook in repo settings, disable polling triggers in pipeline config.

If library is cached, ensure @Library('my-lib@main') _ is used with version/tag. In

Jenkins global config, set “Load implicitly” to false for manual control, and clear the SCM cache

in $JENKINS_HOME/caches.

60

}

triggers { githubPush()}

@Library('my-lib@v1.2.3') _

Q3: Multi-branch pipeline triggers twice on a single commit.

Q2: Jenkins shared library update isn’t reflecting in new pipeline runs.

Answer:

Answer:

Sample Points:

Sample Points:

Example Code:

Example Code:

Ensure
branch in

Use
Passwords” plugin, set

● Use failFast intentionally.

● Catch errors in each parallel branch.

● Aggregate results after all run.

● Never echo secrets.

● Use binding plugins to mask automatically.

● Store in Jenkins Credentials store only.

 if you want all branches to run independently. Also wrap each
to prevent one failure stopping others.

 block to mask secrets and avoid echoing variables. Enable “Mask
.

61

Q4: Pipeline using
error.
Answer:

 stages sometimes skips a branch without

Q5: Credentials binding to environment variables leaks in console output.

parallel

Answer:

SamplePoints:

Sample Points:

Example Code:

Example Code:

failFast: false
catchError

withCredentials
echo false

parallel(
branch1: { catchError { sh 'run-tests.sh' } },
branch2: { catchError { sh 'lint.sh' } },
failFast: false

)

withCredentials([usernamePassword(credentialsId: 'dockerhub',
usernameVariable: 'USER', passwordVariable: 'PASS')]) {

sh 'docker login -u $USER -p $PASS'

●

●

●

● File ownership consistency.

● Use dedicated Jenkins user on agents.

● Avoid running as root unless required.

Pod templates per job type.

Idle timeout to control costs.

Avoid privileged containers unless needed.

Check that agent user has write permissions to Jenkins home and workspace dirs. Align file
ownership between master and agents, and consider using chown post-workspace creation.

Install Kubernetes plugin, define pod templates with container specs for build environments,
use podTemplate in pipelines. Limit pod idle timeout for cost savings.

62

}

sudo chown -R jenkins:jenkins /var/lib/jenkins/workspace

podTemplate(label: 'maven-agent', containers: [
containerTemplate(name: 'maven', image: 'maven:3.8', ttyEnabled:

true, command: 'cat')

Q7: You must dynamically provision agents for Kubernetes builds.

Q6: Distributed builds fail on a new agent with “Permission denied” when
accessing workspace.

Answer:

Answer:

Sample Points:

Sample Points:

Example Code:

Example Code:

● Archive artifacts in upstream.

● Match build IDs in copy step.

● Adjust retention policies.

● Automate coverage checks.

● Fail early to enforce quality.

● Use coverage plugins or scripts.

Use archiveArtifacts in upstream and copyArtifacts plugin in downstream, matching

build numbers or tags. Ensure retention policy keeps artifacts until downstream completes.

Parse coverage report (e.g., Jacoco XML) in a stage, compare value to threshold, fail build with
error() if below.

63

]) {
node('maven-agent') { sh 'mvn clean install'}

}

def coverage = readFile('coverage.txt').trim().toInteger()
if (coverage < 80) error "Coverage below 80%: $coverage%"

archiveArtifacts artifacts: '**/target/*.jar', fingerprint: true

Q8: Pipeline artifacts aren’t available to downstream jobs.

Q9: Need to fail pipeline if code coverage drops below 80%.

Answer:

Answer:

Sample Points:

Sample Points:

Example Code:

Example Code:

● Master for orchestration only.

● Offload builds to agents.

● Reduce master executor count.

● Rollback script as part of pipeline.

● Keep last stable artifact.

● Automate detection of failure.

Move heavy jobs to agents, reduce master’s executor count to 0, and use the master only for
orchestration.

Use a post-deploy stage to check status and call rollback script or redeploy last stable artifact
from archiveArtifacts.

64

Q10: Jenkins master CPU spikes due to concurrent builds.

Q12: Git shallow clone causes missing tags in Jenkins pipeline.

Q11: Pipeline must rollback to previous app version on deployment failure.

Answer:

Answer:

Sample Points:

Sample Points:

Example Code:

Example Code:

post {
failure {

sh './rollback.sh'
}

}

node('build-agent') { sh 'mvn clean install'}

0

 step with

Clean local repo (
or using a cache restoration plugin.

● Upstream triggers with parameters.

● Downstream must accept parameters.

● Match parameter names exactly.

● Shallow clone saves time but limits history.

● Fetch full history when tags are needed.

● Configure per-pipeline.

Increase depth or disable shallow clone for builds requiring tags. Use

to fetch all history.

 block. Ensure downstream is parameterized.

 with

) on failure, consider mounting a clean volume per build

65

Answer:

Answer:

Sample Points:

Answer:
Use build
 Sample Points:

Sample Points:

Example Code:

Example Code:

parameters

~/.m2/repository

checkout

build job: 'downstream', parameters: [string(name: 'VERSION', value:
'1.0')]

checkout([$class: 'GitSCM', branches: [[name: '*/main']], extensions:
[[$class: 'CloneOption', depth: 0]]])

depth:

Q14: Pipeline fails due to Maven repo corruption in agent cache.

Q13: Need to pass parameters from one pipeline to another triggered job.

● Timeout for runaway stages.

● Cache can corrupt over time.

● Periodic clean reduces flakiness.

● Use immutable cache artifacts.

● Build args not persisted in layers.

● Avoid ADDing secret files.

● Mask secrets in Jenkins logs.

 block. This prevents stuck builds from hogging agents.

Use --build-arg with ARG in Dockerfile, then unset inside build step. Avoid embedding

secrets in final layers.

66

Answer:

Sample Points:

Answer:
Wrap stage with
Sample Points:

Example Code:

Example Code:

timeout

sh 'rm -rf ~/.m2/repository && mvn clean install'

withCredentials([string(credentialsId: 'api-key', variable:
'API_KEY')]) {

sh "docker build --build-arg API_KEY=$API_KEY ."
}

Q16: Long-running pipeline stage must auto-abort after 30 minutes.

Q15: Secret text credential must be injected into a Docker build without
leaking in image history.

●

●

Auto-abort frees agents.

Adjust per stage.

Example Code:

Ensure stages are defined with
Ocean only renders defined stages.

● Define all logical steps as stages.

● Avoid script blocks swallowing stages.

● Use parallel stages for clarity.

● Use regex in when for commit messages.

● Prevent accidental prod deploys.

● Lightweight safeguard.

 message, skip stage with directive.

 and not inside raw script without stage. Blue

67

Answer:

Answer:
Read
Sample Points:

Sample Points:

Example Code:

Example Code:

env.GIT_COMMIT

stage('name')

stage('Build') { sh 'mvn clean package'}

when

timeout(time: 30, unit: 'MINUTES') { sh './run-tests.sh'}

Q17: Blue Ocean view missing some pipeline stages.

Q18: Must conditionally skip deployment stage if commit message contains
[skip deploy].

Use
execution.

● Host socket mount vs DinD trade-offs.

● Kaniko avoids privileged mode.

● Security vs compatibility choice.

● Changeset condition reduces wasted builds.

● Pattern matching supports ANT/regex.

● Define in Jenkinsfile for visibility.

 to limit

Use DinD (Docker in Docker) container or mount host socket if security allows. Alternatively,
build with Kaniko/Buildah in rootless mode.

68

volumeMounts:
- mountPath: /var/run/docker.sock
name: docker-sock

when { changeset pattern: 'src/**', comparator: 'ANT' }

stage('Deploy') {
when { not { expression { sh(script: "git log -1 --pretty=%B | grep

-q '\\[skip deploy\\]'", returnStatus: true) != 0 } } }
steps { sh './deploy.sh' }

}

Q20: Pipeline must only run if specific files changed.

Q19: Jenkins agent on Kubernetes fails due to missing Docker socket.

Answer:

Answer:

Sample Points:

SamplePoints:

Example Code:

Example Code:

Use
the path.

● Durable pipelines survive restarts.

● Checkpoint allows resume points.

● Requires persistent workspace.

● Long-term retention offloads from master.

● Metadata in S3 keys aids search.

● Secure bucket with IAM policy.

Ensure Pipeline is configured with
and Checkpoint plugin or external workspace to resume.

 plugin or post-build script to upload logs to S3 with build metadata in

69

S3Log Publisher

options { durabilityHint('MAX_SURVIVABILITY')}

post {
always {

sh 'aws s3 cp ${BUILD_LOG}
s3://jenkins-logs/${JOB_NAME}/${BUILD_NUMBER}.log'

}

when { changeset pattern: "src/**", comparator: "ANT"}

pipelinedurability hint: MAX_SURVIVABILITY

Q22: Need to store pipeline logs in S3 for long-term audit.

Q21: Jenkins master restarted mid-build, and job didn’t resume.

Answer:

Answer:

Sample Points:

SamplePoints:

Example Code:

Example Code:

●

●

●

Input pauses for human gate.

Sequential deploys per environment.

Timeout input to avoid hangs.

● Sandbox protects from unsafe calls.

● Script Approval grants specific methods.

● Use shared libs for trusted code.

 step between stages for manual approval.

Approve scripts in Script Approval page or run pipeline in “trusted” shared library. Limit who can
bypass sandbox.
Sample Points:

70

}

@Library('trusted-lib') _

stage('Deploy Staging') { steps { sh './deploy-staging.sh'}}
stage('Approval') { steps { input 'Deploy to Prod?'}}
stage('Deploy Prod') { steps { sh './deploy-prod.sh'}}

Q23: Groovy sandbox prevents running certain methods in pipeline.

Q24: Pipeline must deploy to multiple environments sequentially with
approval in between.
Answer:

Answer:

Use input
 Sample Points:

Example Code:

Example Code:

● Detect changed paths with git diff.

● Targeted build saves time/cost.

● Works in monorepo CI/CD.

71

 to detect changed directories, set env var for service path, run targeted build.

Q25: Jenkinsfile in monorepo must build only the affected service.
Answer:

Parse
Sample Points:

Example Code:

git diff

def changed = sh(script: "git diff --name-only HEAD~1 | cut -d/ -f1|
sort -u", returnStdout: true).trim()
if (changed.contains('service-a')) { buildServiceA() }

