
●

●

● Never delete lock unless sure it’s stale.

● DynamoDB item removal unblocks state.

● Use -lock-timeout for busy teams.

Import keeps IDs; no recreation.

Align config with live settings before apply.

If using an S3 backend with DynamoDB lock table, manually remove the stale lock item in
DynamoDB . Then re-run. Consider
-lock-timeout to wait for locks in future.

Use terraform import to bring existing resources into state, then run terraform plan to

ensure config matches reality. Avoid changing properties that would force replacement unless
planned.

1

DevOps — Terraform (25 Questions)

Q1: Terraform apply in prod fails with
another apply is in progress, but that process crashed.

Q2: You must migrate manually created AWS resources into Terraform
without downtime.

 because Error locking state

Answer:

Answer:

Sample Points:

Example Code:

only afterconfirmingnootherappliesarerunning

SamplePoints:

aws dynamodb delete-item --table-name tf-lock --key '{"LockID": {"S":
"prod/terraform.tfstate-md5"}}'

●

●

●

●

Run
revert. Use

Plan first to detect drifts.

Plan → decide to update config or infra.

State rm for unmanaged resources.

Avoid console edits in IaC environments.

● Overlap blocks VPC creation.

● Derive subnets to avoid manual mistakes.

● Centralize network config.

 to see differences. If drift is intended, update
for resources no longer managed.

Adjust CIDRs to non-overlapping ranges or use cidrsubnet() function for consistent

derivation. In multi-env setups, store base CIDR in a shared tfvars file.

 files; if not, apply to

2

Answer:

Answer:

SamplePoints:

Sample Points:

Example Code:

Example Code:

Example Code:

terraform plan
terraform state rm

terraform state rm aws_security_group.unmanaged

terraform import aws_s3_bucket.mybucket my-bucket-name

.tf

Q3: Remote backend state on S3 shows drift after manual console
changes.

Q4: Terraform plan for a new VPC fails due to CIDR block overlap.

Check if immutable properties (e.g.,

only.

● Workspaces not isolation alone.

● Different backend keys safer.

● Always pass environment explicitly.

● Prevent destroy for prod DBs.

● Review module changelog before apply.

● Change params in maintenance window.

 in some engines) changed. Use
and perform updates with in-place changes

Separate state files per environment instead of relying solely on workspaces, or use different
backend key paths. Enforce var.environment as a required var.

3

backend "s3"{

lifecycle {
prevent_destroy = true

}

cidrsubnet(var.vpc_cidr, 4, count.index)

allocated_storage
lifecycle{prevent_destroy = true }

Q6: Terraform workspace accidentally applied dev resources.

Q5: Applying a module update forces recreation of critical RDS instance.

Answer:

Answer:

Sample Points:

Sample Points:

Example Code:

Example Code:

prod

●

●

●

● CI pipeline must set creds securely.

● Prefer OIDC over long-lived keys.

● Use TF_VAR_ prefix for vars.

Lifecycle protect critical shared assets.

Separate state files for shared vs env-specific.

IAM denies for delete API calls in shared.

Add prevent_destroy lifecycle on shared resources, and separate shared infra into its own

state. Enforce tagging and IAM policy to block deletes in shared projects.

4

Inject creds via environment variables or use workload identity federation (OIDC) for ephemeral
credentials in CI. Avoid hardcoding in tfvars.

 key = "prod/terraform.tfstate"
}

lifecycle { prevent_destroy = true}

export AWS_ROLE_ARN=arn:aws:iam::123:role/tf-role
terraform apply

Q7:
Answer:

Q8: Applying infra in CI/CD fails due to missing provider creds.

 in staging deleted a shared VPC used by prod. terraform destroy

Answer:

Sample Points:

Sample Points:

Example Code:

Example Code:

Pin provider versions in

Sample Points:

● Mark vars sensitive.

● Encrypt state at rest.

● Restrict read access.

● Pin provider version for consistency.

● Lock file ensures deterministic builds.

● Upgrade via

 and commit

State stores all computed values. Use sensitive = true in variables, enable state

encryption (S3 SSE or Vault backend), and limit state access via IAM.

5

 to repo.

Q9: Terraform state file contains secrets.

Q10: Resource creation fails due to provider version mismatch in team
members’ local setups.

Answer:

Answer:

Sample Points:

Example Code:

Example Code:

variable "db_password"{
 type = string
 sensitive = true
}

required_providers

terraforminit-upgrade.

terraform {
required_providers {
aws = { source = "hashicorp/aws", version = "~> 5.0"}

 }
}

.terraform.lock.hcl

●

●

●

Target only changed modules.

Split state for scale.

Provider filters speed up queries.

● Keep state versioning enabled.

● Rollback means re-applying older config.

● Document rollback procedure.

Check state history in backend (e.g., S3 versioning), download older state, and
apply with matching config.

Use -target for scoped applies when safe, split resources into multiple states/modules, and

enable provider-side filtering.

6

Q11: Terraform plan is slow due to thousands of resources.

Q13: Developers must create S3 buckets only via Terraform, never
manually.

Q12: Need to roll back to a previous infrastructure version after failed
deployment.

Answer:

Answer:

Sample Points:

Sample Points:

Example Code:

Example Code:

terraform plan -target=module.network

terraform

aws s3 cp s3://bucket/prod.tfstate version-id=xyz ./terraform.tfstate

 with

Add pre-commit hook to run

Sample Points:

● Pre-commit enforces formatting.

● CI can also check.

● Consistent style reduces churn.

● Guardrails + detection for manual drift.

● CI as only entrypoint for IaC changes.

● IAM denies outside Terraform role.

 and random provider (

 and fail commit on diff.

) to suffix names.

7

Use AWS Config or Cloud Custodian to detect manual resources, and enforce creation via CI
pipelines with Terraform. Block manual create API via IAM condition on aws:ViaAWSService.

Answer:

Sample Points:

Answer:
Use format()
 Sample Points:

Answer:

Example Code:

Example Code:

var.environment

#!/bin/sh
terraform fmt -recursive -check || exit1

terraform fmt -recursive

random_id

"Condition":{"StringNotEquals":{"aws:CalledVia":"cloudformation.amazon
aws.com"}}

Q14: Team often forgets to run before committing.

Q15: Need to generate unique names for resources across environments.

terraform fmt

● Split large applies.

● Extend token lifetime.

● Orchestrate apply steps.

● Ignore tag changes for immutable IDs.

● Helps for vendor-managed resources.

● Combine env + random for uniqueness.

● Avoid collisions in global namespaces.

● Keep naming convention consistent.

 in lifecycle.

Use short modules with smaller applies or refresh creds via token renewal during apply. For
AWS, use session durations > apply time.

8

Answer:

Sample Points:

Answer:
Use
Sample Points:

Example Code:

Example Code:

ignore_changes = [tags]

aws sts assume-role --duration-seconds 3600

resource "aws_s3_bucket" "b" {
bucket = "${var.environment}-${random_id.suffix.hex}"

}

Q16: Provider credentials expire mid-apply for long deployments.

Q17: Need to avoid recreating immutable resource IDs when only tags
change.

●

●

●

●

● Break cycles into stages.

● Use depends_on explicitly.

 provisioner with

Still apply tags manually if needed.

Provisioners last resort.

Idempotent scripts avoid drift.

Prefer user_data/cloud-init when possible.

. Keep idempotent.

Break the cycle by creating one with minimal config, outputting an ID, and updating the other in
asecond apply. Or use depends_on to force order.

9

Answer:

Answer:
Use
Sample Points:

Sample Points:

Example Code:

Example Code:

local-exec

lifecycle {
ignore_changes = [tags]

}

when = create

provisioner "local-exec" {
when = create
command = "echo ${self.id} >> created.log"

}

Q19: Two resources depend on each other cyclically in config.

Q18: Must run a script after resource creation but before marking apply
complete.

● Avoid mutual references.

Mark variables as sensitive and use
values.

● Sensitive vars mask in logs.

● Use planfile to hide secrets.

● Avoid -var with secrets inline.

● Default tags enforce globally.

● Validation prevents missing tags.

● Use TF Cloud policy sets.

 in provider config (AWS >=3.38), or a tagging module. Validate via
+ custom rules.

 without showing

10

Answer:

Answer:

Sample Points:

Sample Points:

Example Code:

Example Code:

Example Code:

provider "aws"{
default_tags{

Use default_tags
terraform validate

terraform plan -out=planfile

depends_on = [aws_security_group.sg]

terraform plan -out=planfile

Q21: Must ensure all resources are tagged with and

Q20: Terraform in CI/CD must plan without exposing secrets in logs.

Owner Environment.

●

●

●

Alias providers (
resources/modules.

Aliases for multi-provider configs.

Pass providers explicitly to modules.

Keep creds separate per alias.

● Migrate state without losing resources.

● Backend config in .tf file.

● Plan after migration to verify.

) and pass into

 after defining new backend block.

11

terraform init -migrate-state

 terraform init -migrate-state

provider "aws" { alias = "east" }

provider "aws" { alias = "east" region = "us-east-1"}

 tags = { Owner = var.owner, Environment = var.environment}
 }
}

Q24: Must enforce no

Q23: Remote state backend migration from local to S3.
Answer:

 in prod without PR approval.

Q22: Multi-cloud project requires different providers in same root module.

Answer:

Sample Points:

Run
 Sample Points:

Example Code:

Example Code:

terraform apply

● Manual gate before prod apply.

● PR review ensures compliance.

● Use TF Cloud policy-as-code.

● State mv avoids recreation.

● One resource/module at a time.

● Validate after each step.

Refactor incrementally:

1. Extract a resource to new module.

2. Use terraform state mv to match new address.

3. Plan/apply with no changes. Repeat.

Use TF Cloud/Terragrunt with run tasks, or CI pipeline with approval stage before
prod workspace.
Sample Points:

 in

12

Answer:

Answer:

Sample Points:

Example Code:

Example Code:

- stage: Approval
jobs:

- manual: true

terraform state mv aws_s3_bucket.old module.new.aws_s3_bucket.old

apply

Q25: Need to refactor large root module into reusable modules without
downtime.

