DevOps — Terraform (25 Questions)

Q1: Terraform apply in prod fails with Error locking state because
another apply is in progress, but that process crashed.

Answer:
If using an S3 backend with DynamoDB lock table, manually remove the stale lock item in
DynamoDB only afterconfirmingnootherappliesarerunning . Then re-run. Consider

-lock-timeout to wait for locks in future.
SamplePoints:

@ Never delete lock unless sure it’s stale.
@ DynamoDB item removal unblocks state.

@ Use -lock-timeout for busy teams.

Example Code:

aws dynamodb delete-item --table-name tf-lock --key '{"LockID": {"S":
"prod/terraform.tfstate-md5"}}"

Q2: You must migrate manually created AWS resources into Terraform
without downtime.

Answer:
Use terraform import to bring existing resources into state, then run terraform plan to

ensure config matches reality. Avoid changing properties that would force replacement unless
planned.
Sample Points:

@ Import keeps IDs; no recreation.

@ Align config with live settings before apply.

@ Plan first to detect drifts.
Example Code:

terraform import aws_s3_bucket.mybucket my-bucket-name

Q3: Remote backend state on S3 shows drift after manual console
changes.

Answer:

Run terraform plan to see differences. If drift is intended, update . tf files; if not, apply to
revert. Use terraform state rm for resources no longer managed.

SamplePoints:

@ Plan — decide to update config or infra.
@ State rm for unmanaged resources.
@ Avoid console edits in laC environments.

Example Code:

terraform state rm aws_security_group.unmanaged

Q4: Terraform plan for a new VPC fails due to CIDR block overlap.

Answer:
Adjust CIDRs to non-overlapping ranges or use cidrsubnet() function for consistent

derivation. In multi-env setups, store base CIDR in a shared tfvars file.
Sample Points:

@ Overlap blocks VPC creation.
@ Derive subnets to avoid manual mistakes.

@ Centralize network config.
Example Code:

cidrsubnet(var.vpc_cidr, 4, count.index)

Q5: Applying a module update forces recreation of critical RDS instance.

Answer:

Check if immutable properties (e.g., allocated_storage in some engines) changed. Use
lifecycle{prevent_destroy = true } and perform updates with in-place changes
only.

Sample Points:

@ Prevent destroy for prod DBs.
@ Review module changelog before apply.
@ Change params in maintenance window.

Example Code:

lifecycle {
prevent_destroy = true

Q6: Terraform workspace prod accidentally applied dev resources.
Answer:

Separate state files per environment instead of relying solely on workspaces, or use different
backend key paths. Enforce var.environment as a required var.

Sample Points:

@ Workspaces not isolation alone.
@ Different backend keys safer.

@ Always pass environment explicitly.
Example Code:

backend "s3"{

key = "prod/terraform.tfstate"”
}

Q7: terraform destroy in staging deleted a shared VPC used by prod.

Answer:

Add prevent_destroy lifecycle on shared resources, and separate shared infra into its own
state. Enforce tagging and 1AM policy to block deletes in shared projects.
Sample Points:

@ Lifecycle protect critical shared assets.
@ Separate state files for shared vs env-specific.

@ |AM denies for delete API calls in shared.
Example Code:

lifecycle { prevent_destroy = true}

Q8: Applying infra in CI/CD fails due to missing provider creds.

Answer:
Inject creds via environment variables or use workload identity federation (OIDC) for ephemeral

credentials in Cl. Avoid hardcoding in tfvars.
Sample Points:

@ Cl pipeline must set creds securely.
@ Prefer OIDC over long-lived keys.

@ Use TF_VAR_ prefix for vars.
Example Code:

export AWS_ROLE_ARN=arn:aws:iam::123:role/tf-role
terraform apply

Q9: Terraform state file contains secrets.
Answer:
State stores all computed values. Use sensitive = true in variables, enable state

encryption (S3 SSE or Vault backend), and limit state access via IAM.
Sample Points:

@ Mark vars sensitive.
@ Encrypt state at rest.

@ Restrict read access.
Example Code:

variable "db_password"{
type = string
sensitive = true

}

Q10: Resource creation fails due to provider version mismatch in team
members’ local setups.

Answer:
Pin provider versions in required_providers and commit .terraform.lock.hcl to repo.
Sample Points:

@ Pin provider version for consistency.
@ Lock file ensures deterministic builds.
@® Upgrade via terraforminit-upgrade.

Example Code:

terraform {
required_providers {
aws = { source = "hashicorp/aws", version = "~> 5.0"}

Q11: Terraform plan is slow due to thousands of resources.

Answer:
Use -target for scoped applies when safe, split resources into multiple states/modules, and

enable provider-side filtering.
Sample Points:

@ Target only changed modules.
@ Split state for scale.

@ Provider filters speed up queries.
Example Code:

terraform plan -target=module.network

Q12: Need to roll back to a previous infrastructure version after failed
deployment.

Answer:
Check state history in backend (e.g., S3 versioning), download older state, and terraform
apply with matching config.

Sample Points:

@ Keep state versioning enabled.
@ Rollback means re-applying older config.

@ Document rollback procedure.
Example Code:

aws s3 cp s3://bucket/prod.tfstate version-id=xyz ./terraform.tfstate

Q13: Developers must create S3 buckets only via Terraform, never
manually.

Answer:

Use AWS Config or Cloud Custodian to detect manual resources, and enforce creation via Cl
pipelines with Terraform. Block manual create API via IAM condition on aws:ViaAWSService.

Sample Points:

@ Guardrails + detection for manual drift.
@ ClI as only entrypoint for laC changes.

@ IAM denies outside Terraform role.
Example Code:

"Condition":{"StringNotEquals":{"aws:CalledVia":"cloudformation.amazon
aws.com"}}

Q14: Team often forgets to run terraform fmt pefore committing.

Answer:
Add pre-commit hook to run terraform fmt -recursive and fail commit on diff.
Sample Points:

@ Pre-commit enforces formatting.
@ Cl can also check.

@ Consistent style reduces churn.
Example Code:

#!/bin/sh
terraform fmt -recursive -check || exit1

Q15: Need to generate unique names for resources across environments.

Answer:
Use format()with var.environment and random provider (random_id) to suffix names.
Sample Points:

@ Combine env + random for uniqueness.
@ Avoid collisions in global namespaces.
@ Keep naming convention consistent.

Example Code:

resource "aws_s3_bucket" "b" {
bucket = "${var.environment}-S${random_id.suffix.hex}"

Q16: Provider credentials expire mid-apply for long deployments.

Answer:
Use short modules with smaller applies or refresh creds via token renewal during apply. For

AWS, use session durations > apply time.
Sample Points:

@ Split large applies.
@ Extend token lifetime.

@ Orchestrate apply steps.
Example Code:

aws sts assume-role --duration-seconds 3600

Q17: Need to avoid recreating immutable resource IDs when only tags
change.

Answer:
Use ignore_changes = [tags] in lifecycle.
Sample Points:

@ Ignore tag changes for immutable IDs.

@ Helps for vendor-managed resources.

@ Still apply tags manually if needed.
Example Code:

lifecycle {
ignore_changes = [tags]

Q18: Must run a script after resource creation but before marking apply
complete.

Answer:
Use local-exec provisioner with when = create. Keep idempotent.

Sample Points:
@ Provisioners last resort.
@ I|dempotent scripts avoid drift.
@ Prefer user_data/cloud-init when possible.

Example Code:

provisioner "local-exec" {

create
"echo S{self.id} >> created.log"

when

command

Q19: Two resources depend on each other cyclically in config.
Answer:

Break the cycle by creating one with minimal config, outputting an ID, and updating the other in
asecond apply. Or use depends_on to force order.

Sample Points:

@ Break cycles into stages.

@ Use depends_on explicitly.

10

@ Avoid mutual references.
Example Code:

depends_on = [aws_security_group.sg]

Q20: Terraform in CI/CD must plan without exposing secrets in logs.

Answer:

Mark variables as sensitive and use terraform plan -out=planfile without showing
values.

Sample Points:

@ Sensitive vars mask in logs.

@ Use planfile to hide secrets.

@ Avoid -var with secrets inline.

Example Code:

terraform plan -out=planfile

Q21: Must ensure all resources are tagged with Owner and Environment.

Answer:
Use default_tagsin provider config (AWS >=3.38), or a tagging module. Validate via

terraform validate + custom rules.
Sample Points:

@ Default tags enforce globally.
@ Validation prevents missing tags.
@ Use TF Cloud policy sets.

Example Code:

provider "aws"{
default_tags{

11

tags = { Owner = var.owner, Environment = var.environment}

Q22: Multi-cloud project requires different providers in same root module.

Answer:
Alias providers (provider "aws" { alias = "east" })and pass into

resources/modules.
Sample Points:

@ Aliases for multi-provider configs.
@ Pass providers explicitly to modules.

@ Keep creds separate per alias.
Example Code:

provider "aws" { alias = "east" region = "us-east-1"}

Q23: Remote state backend migration from local to S3.
Answer:

Run terraform init -migrate-stateafter defining new backend block.

Sample Points:

@ Migrate state without losing resources.
@ Backend config in .f file.

@ Plan after migration to verify.
Example Code:

terraform init -migrate-state

Q24: Must enforce no terraform apply in prod without PR approval.

12

Answer:

Use TF Cloud/Terragrunt with run tasks, or Cl pipeline with approval stage before apply in
prod workspace.

Sample Points:

@ Manual gate before prod apply.
@ PR review ensures compliance.
@ Use TF Cloud policy-as-code.

Example Code:

- stage: Approval
jobs:
- manual: true

Q25: Need to refactor large root module into reusable modules without
downtime.

Answer:
Refactor incrementally:

1. Extract a resource to new module.

2. Use terraform state mv to match new address.

3. Plan/apply with no changes. Repeat.
Sample Points:

@ State mv avoids recreation.
@ One resource/module at a time.

@ Validate after each step.
Example Code:

terraform state mv aws_s3_bucket.old module.new.aws_s3_bucket.old

