
● Prune Docker artifacts periodically.

● Workspace cleanup plugin.

● Larger disk or separate volume for

Check workspace cleanup policies — old builds might be consuming disk. Enable
Cleanup post-build, prune unused Docker images/volumes (), and
consider moving Docker storage to a larger disk. For multi-tenant agents, enforce quota per
build.

If library is cached, ensure @Library('my-lib@main') _ is used with version/tag. In

Jenkins global config, set “Load implicitly” to false for manual control, and clear the SCM cache

in $JENKINS_HOME/caches.

1

DevOps — Jenkins (25 Questions)

Q1: A Jenkins pipeline intermittently fails during
space left on device” on the agent node.

Q2: Jenkins shared library update isn’t reflecting in new pipeline runs.

 with “no docker build

Answer:

Answer:

Sample Points:

Sample Points:

Example Code:

post {
always {

cleanWs()
sh 'docker system prune -af'

}

/var/lib/docker.

Workspace
docker system prune

}

Ensure
branch in

● Use intentionally.

● Explicit version tag avoids stale refs.

● Clear cache when updating.

● Avoid master default for stability.

● Avoid mixed triggers (webhook + polling).

● Audit SCM webhook configuration.

● Use a single trigger source.

Likely duplicate webhooks or SCM polling enabled alongside webhooks. Remove extra
webhook in repo settings, disable polling triggers in pipeline config.

 if you want all branches to run independently. Also wrap each
to prevent one failure stopping others.

2

failFast

failFast: false
catchError

triggers { githubPush()}

@Library('my-lib@v1.2.3') _

Answer:

Answer:

Sample Points:

SamplePoints:

Example Code:

Example Code:

Q4: Pipeline using
error.

Q3: Multi-branch pipeline triggers twice on a single commit.

 stages sometimes skips a branch without parallel

Use
Passwords” plugin, set

● Catch errors in each parallel branch.

● Aggregate results after all run.

● Never echo secrets.

● Use binding plugins to mask automatically.

● Store in Jenkins Credentials store only.

 block to mask secrets and avoid echoing variables. Enable “Mask
.

Check that agent user has write permissions to Jenkins home and workspace dirs. Align file

3

Answer:

Answer:

Sample Points:

Example Code:

Example Code:

withCredentials
echo false

parallel(
branch1: { catchError { sh 'run-tests.sh' } },
branch2: { catchError { sh 'lint.sh' } },
failFast: false

)

withCredentials([usernamePassword(credentialsId: 'dockerhub',
usernameVariable: 'USER', passwordVariable: 'PASS')]) {

sh 'docker login -u $USER -p $PASS'
}

Q6: Distributed builds fail on a new agent with “Permission denied” when
accessing workspace.

Q5: Credentials binding to environment variables leaks in console output.

●

●

●

● File ownership consistency.

● Use dedicated Jenkins user on agents.

● Avoid running as root unless required.

Pod templates per job type.

Idle timeout to control costs.

Avoid privileged containers unless needed.

ownership between master and agents, and consider using post-workspace creation.

Install Kubernetes plugin, define pod templates with container specs for build environments,
use podTemplate in pipelines. Limit pod idle timeout for cost savings.

4

chown

sudo chown -R jenkins:jenkins /var/lib/jenkins/workspace

podTemplate(label: 'maven-agent', containers: [
containerTemplate(name: 'maven', image: 'maven:3.8', ttyEnabled:

true, command: 'cat')
]) {

node('maven-agent') { sh 'mvn clean install' }
}

Answer:

Sample Points:

Sample Points:

Example Code:

Example Code:

Q8: Pipeline artifacts aren’t available to downstream jobs.

Q7: You must dynamically provision agents for Kubernetes builds.

● Archive artifacts in upstream.

● Match build IDs in copy step.

● Adjust retention policies.

● Automate coverage checks.

● Fail early to enforce quality.

● Use coverage plugins or scripts.

Move heavy jobs to agents, reduce master’s executor count to 0, and use the master only for
orchestration.

Use archiveArtifacts in upstream and copyArtifacts plugin in downstream, matching

build numbers or tags. Ensure retention policy keeps artifacts until downstream completes.

Parse coverage report (e.g., Jacoco XML) in a stage, compare value to threshold, fail build with
error() if below.

5

Answer:

Answer:

Answer:

Sample Points:

Sample Points:

Sample Points:

Example Code:

Example Code:

def coverage = readFile('coverage.txt').trim().toInteger()
if (coverage < 80) error "Coverage below 80%: $coverage%"

archiveArtifacts artifacts: '**/target/*.jar', fingerprint: true

Q10: Jenkins master CPU spikes due to concurrent builds.

Q9: Need to fail pipeline if code coverage drops below 80%.

●

● Master for orchestration only.

● Offload builds to agents.

● Reduce master executor count.

● Rollback script as part of pipeline.

● Keep last stable artifact.

● Automate detection of failure.

Shallow clone saves time but limits history.

Increase depth or disable shallow clone for builds requiring tags. Use
0to fetch all history.

 with

Use a post-deploy stage to check status and call rollback script or redeploy last stable artifact
from archiveArtifacts.

6

Answer:

Answer:

Sample Points:

Sample Points:

Example Code:

Example Code:

post {
failure {

sh './rollback.sh'
}

}

node('build-agent') { sh 'mvn clean install'}

checkout depth:

Q12: Git shallow clone causes missing tags in Jenkins pipeline.

Q11: Pipeline must rollback to previous app version on deployment failure.

 step with

Clean local repo (
or using a cache restoration plugin.

● Cache can corrupt over time.

● Periodic clean reduces flakiness.

● Use immutable cache artifacts.

● Upstream triggers with parameters.

● Downstream must accept parameters.

● Match parameter names exactly.

● Fetch full history when tags are needed.

● Configure per-pipeline.

 block. Ensure downstream is parameterized.

) on failure, consider mounting a clean volume per build

7

Answer:

Answer:
Use build
 Sample Points:

Sample Points:

Example Code:

Example Code:

Example Code:

parameters

~/.m2/repository

build job: 'downstream', parameters: [string(name: 'VERSION', value:
'1.0')]

checkout([$class: 'GitSCM', branches: [[name: '*/main']], extensions:
[[$class: 'CloneOption', depth: 0]]])

Q14: Pipeline fails due to Maven repo corruption in agent cache.

Q13: Need to pass parameters from one pipeline to another triggered job.

●

●

●

Timeout for runaway stages.

Auto-abort frees agents.

Adjust per stage.

Example Code:

● Build args not persisted in layers.

● Avoid ADDing secret files.

● Mask secrets in Jenkins logs.

 block. This prevents stuck builds from hogging agents.

Use --build-arg with ARG in Dockerfile, then unset inside build step. Avoid embedding

secrets in final layers.

8

 timeout

sh 'rm -rf ~/.m2/repository && mvn clean install'

timeout(time: 30, unit: 'MINUTES') { sh './run-tests.sh'}

withCredentials([string(credentialsId: 'api-key', variable:
'API_KEY')]) {

sh "docker build --build-arg API_KEY=$API_KEY ."
}

Q16: Long-running pipeline stage must auto-abort after 30 minutes.
Answer:

Q15: Secret text credential must be injected into a Docker build without
leaking in image history.

Answer:

Sample Points:

Wrap stage with
 Sample Points:

Example Code:

Ensure stages are defined with
Ocean only renders defined stages.

● Define all logical steps as stages.

● Avoid script blocks swallowing stages.

● Use parallel stages for clarity.

● Use regex in when for commit messages.

● Prevent accidental prod deploys.

● Lightweight safeguard.

 message, skip stage with directive.

 and not inside raw script without stage. Blue

9

Q17: Blue Ocean view missing some pipeline stages.

Q18: Must conditionally skip deployment stage if commit message contains
[skip deploy].
Answer:

Answer:

Read
Sample Points:

Sample Points:

Example Code:

Example Code:

env.GIT_COMMIT

stage('name')

stage('Build') { sh 'mvn clean package'}

when

stage('Deploy') {
when { not { expression { sh(script: "git log -1 --pretty=%B | grep

-q '\\[skip deploy\\]'", returnStatus: true) != 0 } } }
steps { sh './deploy.sh' }

}

Use
execution.

Ensure Pipeline is configured with

● Host socket mount vs DinD trade-offs.

● Kaniko avoids privileged mode.

● Security vs compatibility choice.

● Changeset condition reduces wasted builds.

● Pattern matching supports ANT/regex.

● Define in Jenkinsfile for visibility.

 to limit

Use DinD (Docker in Docker) container or mount host socket if security allows. Alternatively,
build with Kaniko/Buildah in rootless mode.

10

Q20: Pipeline must only run if specific files changed.

Q21: Jenkins master restarted mid-build, and job didn’t resume.

Q19: Jenkins agent on Kubernetes fails due to missing Docker socket.

Answer:

Answer:

Answer:

Sample Points:

SamplePoints:

Example Code:

Example Code:

volumeMounts:
- mountPath: /var/run/docker.sock
name: docker-sock

when { changeset pattern: "src/**", comparator: "ANT"}

when { changeset pattern: 'src/**', comparator: 'ANT' }

pipeline durability hint: MAX_SURVIVABILITY

and

Use
the path.

● Durable pipelines survive restarts.

● Checkpoint allows resume points.

● Requires persistent workspace.

● Long-term retention offloads from master.

● Metadata in S3 keys aids search.

● Secure bucket with IAM policy.

 plugin or external workspace to resume.

Approve scripts in Script Approval page or run pipeline in “trusted” shared library. Limit who can

 plugin or post-build script to upload logs to S3 with build metadata in

11

Checkpoint

S3Log Publisher

options { durabilityHint('MAX_SURVIVABILITY')}

post {
always {

sh 'aws s3 cp ${BUILD_LOG}
s3://jenkins-logs/${JOB_NAME}/${BUILD_NUMBER}.log'

}
}

Answer:

Answer:

Sample Points:

SamplePoints:

Example Code:

Example Code:

Q22: Need to store pipeline logs in S3 for long-term audit.

Q23: Groovy sandbox prevents running certain methods in pipeline.

●

●

●

bypass sandbox.
Sample Points:

● Detect changed paths with git diff.

Input pauses for human gate.

Sequential deploys per environment.

Timeout input to avoid hangs.

● Sandbox protects from unsafe calls.

● Script Approval grants specific methods.

● Use shared libs for trusted code.

 step between stages for manual approval.

12

 to detect changed directories, set env var for service path, run targeted build.

Answer:
Use input
 Sample Points:

Answer:
Parse
Sample Points:

Example Code:

Example Code:

git diff

@Library('trusted-lib') _

stage('Deploy Staging') { steps { sh './deploy-staging.sh'}}
stage('Approval') { steps { input 'Deploy to Prod?'}}
stage('Deploy Prod') { steps { sh './deploy-prod.sh'}}

Q25: Jenkinsfile in monorepo must build only the affected service.

Q24: Pipeline must deploy to multiple environments sequentially with
approval in between.

● Targeted build saves time/cost.

● Works in monorepo CI/CD.

13

Example Code:

def changed = sh(script: "git diff --name-only HEAD~1 | cut -d/ -f1|
sort -u", returnStdout: true).trim()
if (changed.contains('service-a')) { buildServiceA() }

