DevOps — Jenkins (25 Questions)

Q1: A Jenkins pipeline intermittently fails during docker build with “no
space left on device” on the agent node.

Answer:
Check workspace cleanup policies — old builds might be consuming disk. Enable Workspace
Cleanup post-build, prune unused Docker images/volumes (docker system prune), and

consider moving Docker storage to a larger disk. For multi-tenant agents, enforce quota per
build.
Sample Points:

@ Prune Docker artifacts periodically.
@ Workspace cleanup plugin.

@ Larger disk or separate volume for /var/lib/docker.
Example Code:

post {
always {
cleanWs()
sh 'docker system prune -af’
}
}

Q2: Jenkins shared library update isn’t reflecting in new pipeline runs.

Answer:
If library is cached, ensure @Library('my-lib@main’) _ is used with version/tag. In

Jenkins global config, set “Load implicitly” to false for manual control, and clear the SCM cache

in SJENKINS_HOME/caches.
Sample Points:

@ Explicit version tag avoids stale refs.

@ Clear cache when updating.

@ Avoid master default for stability.

Example Code:

@Library('my-1lib@v1.2.3") _

Q3: Multi-branch pipeline triggers twice on a single commit.

Answer:

Likely duplicate webhooks or SCM polling enabled alongside webhooks. Remove extra
webhook in repo settings, disable polling triggers in pipeline config.

Sample Points:

@ Avoid mixed triggers (webhook + polling).
@ Audit SCM webhook configuration.

@ Use a single trigger source.
Example Code:

triggers { githubPush()}

Q4: Pipeline using parallel stages sometimes skips a branch without
error.

Answer:
Ensure failFast: false if you want all branches to run independently. Also wrap each

branch in catchError to prevent one failure stopping others.
SamplePoints:

@ Use failFast intentionally.

@ Caitch errors in each parallel branch.

@ Aggregate results after all run.
Example Code:

parallel(
branch1: { catchError { sh 'run-tests.sh' } },
branch2: { catchError { sh 'lint.sh' } },
failFast: false

Q5: Credentials binding to environment variables leaks in console output.

Answer:
Use withCredentials block to mask secrets and avoid echoing variables. Enable “Mask

Passwords” plugin, set echo false.
Sample Points:

@ Never echo secrets.
@ Use binding plugins to mask automatically.
@ Store in Jenkins Credentials store only.

Example Code:

withCredentials([usernamePassword(credentialsId: 'dockerhub’,
usernameVariable: 'USER', passwordVariable: 'PASS')]) {
sh 'docker login -u SUSER -p SPASS'

Q6: Distributed builds fail on a new agent with “Permission denied” when
accessing workspace.

Answer:
Check that agent user has write permissions to Jenkins home and workspace dirs. Align file

ownership between master and agents, and consider using chown post-workspace creation.
Sample Points:

@ File ownership consistency.
@ Use dedicated Jenkins user on agents.

@ Avoid running as root unless required.
Example Code:

sudo chown -R jenkins:jenkins /var/lib/jenkins/workspace

Q7: You must dynamically provision agents for Kubernetes builds.

Answer:

Install Kubernetes plugin, define pod templates with container specs for build environments,
use podTemplate in pipelines. Limit pod idle timeout for cost savings.

Sample Points:

@ Pod templates per job type.
@ Idle timeout to control costs.

@ Avoid privileged containers unless needed.
Example Code:

podTemplate(label: 'maven-agent', containers: |
containerTemplate(name: 'maven', image: 'maven:3.8', ttyEnabled:
true, command: 'cat')

D A

node('maven-agent') { sh 'mvn clean install' }

Q8: Pipeline artifacts aren’t available to downstream jobs.

Answer:
Use archiveArtifacts in upstream and copyArtifacts plugin in downstream, matching

build numbers or tags. Ensure retention policy keeps artifacts until downstream completes.
Sample Points:

@ Archive artifacts in upstream.
@ Match build IDs in copy step.

@ Adjust retention policies.
Example Code:

archiveArtifacts artifacts: '**/target/*.jar', fingerprint: true

Q9: Need to fail pipeline if code coverage drops below 80%.

Answer:
Parse coverage report (e.g., Jacoco XML) in a stage, compare value to threshold, fail build with
error() if below.

Sample Points:

@ Automate coverage checks.
@ Fail early to enforce quality.

@ Use coverage plugins or scripts.
Example Code:

def coverage = readFile('coverage.txt').trim().toInteger()
if (coverage < 80) error "Coverage below 80%: Scoverage%"

Q10: Jenkins master CPU spikes due to concurrent builds.

Answer:
Move heavy jobs to agents, reduce master’s executor count to 0, and use the master only for

orchestration.
Sample Points:

@ Master for orchestration only.
@ Offload builds to agents.

@ Reduce master executor count.
Example Code:

node('build-agent') { sh 'mvn clean install'}

Q11: Pipeline must rollback to previous app version on deployment failure.

Answer:
Use a post-deploy stage to check status and call rollback script or redeploy last stable artifact

from archiveArtifacts.
Sample Points:

@ Rollback script as part of pipeline.
@ Keep last stable artifact.
@ Automate detection of failure.

Example Code:

post {
failure {
sh './rollback.sh'

Q12: Git shallow clone causes missing tags in Jenkins pipeline.

Answer:
Increase depth or disable shallow clone for builds requiring tags. Use checkout with depth:

Oto fetch all history.
Sample Points:

@ Shallow clone saves time but limits history.

@ Fetch full history when tags are needed.
@ Configure per-pipeline.

Example Code:

checkout([Sclass: 'GitSCM', branches: [[name: 'x/main']], extensions:
[[Sclass: 'CloneOption', depth: 0]1])

Q13: Need to pass parameters from one pipeline to another triggered job.

Answer:
Use buildstep with parameters block. Ensure downstream is parameterized.

Sample Points:

@ Upstream triggers with parameters.
@ Downstream must accept parameters.

@ Match parameter names exactly.
Example Code:

build job: 'downstream', parameters: [string(name: 'VERSION', value:
'1.0")]

Q14: Pipeline fails due to Maven repo corruption in agent cache.

Answer:
Clean local repo (~/ .m2/repository) on failure, consider mounting a clean volume per build

or using a cache restoration plugin.
Sample Points:

@ Cache can corrupt over time.
@ Periodic clean reduces flakiness.

@ Use immutable cache artifacts.
Example Code:

sh 'rm -rf ~/.m2/repository && mvn clean install’

Q15: Secret text credential must be injected into a Docker build without
leaking in image history.

Answer:
Use --build-arg with ARG in Dockerfile, then unset inside build step. Avoid embedding

secrets in final layers.
Sample Points:

@ Build args not persisted in layers.
@ Avoid ADDing secret files.
@ Mask secrets in Jenkins logs.

Example Code:

withCredentials([string(credentialsId: 'api-key', variable:
"API_KEY')]) {
sh "docker build --build-arg API_KEY=SAPI_KEY ."

Q16: Long-running pipeline stage must auto-abort after 30 minutes.
Answer:

Wrap stage with timeoutblock. This prevents stuck builds from hogging agents.
Sample Points:

@ Timeout for runaway stages.
@ Auto-abort frees agents.

@ Adjust per stage.

Example Code:

timeout(time: 30, unit: 'MINUTES') { sh './run-tests.sh'}

Q17: Blue Ocean view missing some pipeline stages.

Answer:

Ensure stages are defined with stage('name ') and not inside raw script without stage. Blue
Ocean only renders defined stages.

Sample Points:

@ Define all logical steps as stages.
@ Avoid script blocks swallowing stages.

@ Use parallel stages for clarity.
Example Code:

stage('Build') { sh 'mvn clean package'}

Q18: Must conditionally skip deployment stage if commit message contains
[skip deploy].

Answer:

Read env.GIT_COMMIT message, skip stage with when directive.
Sample Points:

@ Use regex in when for commit messages.

@ Prevent accidental prod deploys.

@ Lightweight safeguard.
Example Code:

stage('Deploy')

when { not { expression { sh(script: "git log -1 --pretty=%B | grep
-q '\\[skip deploy\\]'", returnStatus: true) '= 0 } } }

steps { sh './deploy.sh' }

10

Q19: Jenkins agent on Kubernetes fails due to missing Docker socket.

Answer:

Use DinD (Docker in Docker) container or mount host socket if security allows. Alternatively,
build with Kaniko/Buildah in rootless mode.

Sample Points:

@ Host socket mount vs DinD trade-offs.
@ Kaniko avoids privileged mode.
@ Security vs compatibility choice.

Example Code:

volumeMounts:
- mountPath: /var/run/docker.sock
name: docker-sock

Q20: Pipeline must only run if specific files changed.

Answer:

Use when { changeset pattern: 'src/**', comparator: 'ANT' } to limit
execution.

SamplePoints:

@ Changeset condition reduces wasted builds.
@ Pattern matching supports ANT/regex.

@ Define in Jenkinsfile for visibility.
Example Code:

when { changeset pattern: "src/**", comparator: "ANT"}

Q21: Jenkins master restarted mid-build, and job didn’t resume.

Answer:
Ensure Pipeline is configured with pipeline durability hint: MAX_SURVIVABILITY

11

and Checkpoint plugin or external workspace to resume.
Sample Points:

@ Durable pipelines survive restarts.
@ Checkpoint allows resume points.

@ Requires persistent workspace.
Example Code:

options { durabilityHint('MAX_SURVIVABILITY')}

Q22: Need to store pipeline logs in S3 for long-term audit.

Answer:
Use S3Log Publisher plugin or post-build script to upload logs to S3 with build metadata in

the path.
SamplePoints:

@ Long-term retention offloads from master.
@ Metadata in S3 keys aids search.

@ Secure bucket with IAM policy.
Example Code:

post {
always {
sh 'aws s3 cp S{BUILD_LOG}
s3://jenkins-logs/${JOB_NAME}/${BUILD_NUMBER}.1log"

}

Q23: Groovy sandbox prevents running certain methods in pipeline.

Answer:
Approve scripts in Script Approval page or run pipeline in “trusted” shared library. Limit who can

12

bypass sandbox.
Sample Points:

@ Sandbox protects from unsafe calls.
@ Script Approval grants specific methods.
@ Use shared libs for trusted code.

Example Code:

@Library('trusted-1ib') _

Q24: Pipeline must deploy to multiple environments sequentially with
approval in between.

Answer:
Use inputstep between stages for manual approval.

Sample Points:

@ Input pauses for human gate.
@ Sequential deploys per environment.
@ Timeout input to avoid hangs.

Example Code:

stage('Deploy Staging') { steps { sh './deploy-staging.sh'}}
stage('Approval') { steps { input 'Deploy to Prod?'}}
stage('Deploy Prod') { steps { sh './deploy-prod.sh'}}

Q25: Jenkinsfile in monorepo must build only the affected service.

Answer:
Parse git diff to detect changed directories, set env var for service path, run targeted build.

Sample Points:

@ Detect changed paths with git diff.

@ Targeted build saves time/cost.

@ Works in monorepo CI/CD.
Example Code:

def changed = sh(script: "git diff --name-only HEAD~1
sort -u", returnStdout: true).trim()
if (changed.contains('service-a')) { buildServiceA() }

| cut -d/ -f1]

13

