
● History rewrite required. 

● Rotate secrets even if removed. 

● Inform collaborators to re-clone. 

● Outdated base = merge noise. 

● Rebase to clean commit history. 

● Cherry-pick for precise isolation. 

 
Use git filter-repo or 
remote, and rotate credentials immediately. 

 to remove them from history, force-push to 

1 

 
This can happen if the branch was created from an outdated base or if a merge was done with 
incorrect ancestry. Run git fetch --all, then rebase onto the latest main to replay only
your commits. For large drift, create a new branch from main and cherry-pick your changes. 

DevOps — Git (25 Questions) 

Q1: A feature branch shows hundreds of unrelated changes in
after merging main. 

Q2: You accidentally committed secrets to Git and pushed to remote. 

git diff 

Answer:

Answer:

Sample Points:

Sample Points:

Example Code:

Example Code:

git checkout feature
git fetch origin
git rebase origin/main
 

BFG Repo-Cleaner



● Repo migration resets ancestry. 

● Merge histories once, then clean. 

● Use tags to mark migration point. 

 
This happens when histories differ. Use 
during the first merge, then align branches. 

● High-churn files → constant conflicts. 

● Modularize files to isolate changes. 

● Short-lived branches minimize pain. 

 
This is usually due to parallel changes in high-churn files. Apply a consistent merge strategy 
(ours, theirs), or split config into smaller files. Encourage feature toggles to reduce long-lived 
branches. 

2 

git merge -X theirs feature 

 

git filter-repo --path secret.txt --invert-paths
git push origin --force 

git pull origin main --allow-unrelated-histories 

git pull --allow-unrelated-histories 

Q4: 
Answer:

 shows “unrelated histories” after repo migration. 

Q3: Merge conflicts keep recurring in the same file across multiple sprints. 

Answer:

Sample Points:

Sample Points:

Example Code:

Example Code:

git pull



Use 
target. 

● Sparse checkout saves bandwidth. 

● Useful for monorepos. 

● Avoid full clone if unnecessary. 

Use sparse checkout to pull only that folder. 

Sample Points:

 to squash commits, or 

● Squash for cleaner history. 

● Rebase interactive for fine control. 

● Squash merge preserves branch diff only. 

 when merging into 

 
Fetch latest, back up your branch, then hard reset to remote main. Reapply your changes on 

3 

Q7: A teammate force-pushed 

Q6: You cloned a large repo but only need a single folder. 

Answer: 

 and you have diverging histories. 

Q5: You need to squash all commits in a feature branch before merging. 
Answer: 

Answer:

Sample Points: 

Example Code:

Example Code:

git rebase -i

git rebase -i HEAD~5 

git sparse-checkout init --cone
git sparse-checkout set folder/path 

git merge --squash

main



top. 

● 

● Back up before reset. 

● Divergence due to force push. 

● Use reflog if needed. 

● GPG key for identity assurance. 

● Repo policy enforces signing. 

● Protects against commit spoofing. 

LFS stores binaries outside Git history. 

Use Git LFS for binaries, migrate existing ones with 

Sample Points:

Generate GPG key, add to Git config, and enforce signed commits in repo settings. 

Sample Points:

4 

Sample Points: 

Answer: 

Answer: 

Example Code:

Example Code:

git fetch origin
git checkout main
git reset --hard origin/main 

git config --global user.signingkey <KEY_ID>
git commit -S -m "Signed commit" 

git lfs migrate. 

Q9: Large binary files cause repo size to explode. 

Q8: Need to sign all commits with GPG for compliance. 



● Keeps repo lightweight. 

● Requires LFS installed on clients. 

● Revert is safe on shared branches. 

● Doesn’t rewrite history. 

● Reapply later if needed. 

● Annotated tags store message/author. 

● Push tags explicitly. 

● Use semantic versioning. 

 to create a new commit undoing changes. 

Create annotated tags for release metadata. Push explicitly to remote. 

Sample Points:

5 

Answer: 

Answer: 
Use 
Sample Points: 

Example Code:

Example Code:

Example Code:

git revert

git lfs install
git lfs track "*.zip" 

git tag -a v1.2.0 -m "Release 1.2.0"
git push origin v1.2.0 

Q10: Need to tag a release and push it to remote. 

Q11: You need to revert a single commit in the middle of history without
removing others. 



Restrict pipeline triggers in 

Sample Points:

 
Remove from index, add to 
history. 

● Branch filters reduce wasted CI runs. 

● Config in pipeline definition. 

● Improves build efficiency. 

● Remove and ignore to prevent recurrence. 

● History rewrite for permanent removal. 

● Consider LFS for large assets. 

, and commit removal. For complete removal, rewrite 

 or GitHub Actions workflows with branch filters. 

6 

on: 
push: 
branches:

 
 
 

- main
- dev

git revert <commit_hash> 

.gitignore

.gitlab-ci.yml

Q13: Accidentally committed large log files you don’t want in repo at all. 

Q12: CI pipeline triggers on every commit to any branch, but you only want
it on main and dev. 

Answer: 

Answer:

Sample Points:

Example Code:

Example Code:



● Cherry-pick applies single commit. 

● Resolve conflicts manually if needed. 

● Preserve commit metadata. 

● Binary conflicts require manual choice. 

● Ours/theirs for conflict resolution. 

● Commit after resolving. 

 for the specific commit. 

 
Binary files can’t be merged automatically. Decide which version to keep using 
--ours or --theirs. 

7 

 git cherry-pick

 

git rm --cached big.log
echo "big.log" >> .gitignore 

git checkout release-1.0
git cherry-pick <commit_hash> 

git checkout --ours path/file.bin
git add path/file.bin 

git checkout 

Q14: Need to apply a fix from 
Answer: 

 to an older release branch. 

Q15: Git merge shows binary files as conflicts with no merge tool option. 

main

Answer:

Use
 Sample Points: 

Sample Points:

Example Code:

Example Code:



Create a patch with 

Sample Points:

 
Ensure you clone with 

● Use platform RBAC. 

● Deploy keys for automation. 

● Never give write if not required. 

● Format-patch preserves metadata. 

● Works across unrelated repos. 

● Keep patch files in secure storage. 

 or run 

 and apply with 

 role in hosting platform or create a deploy key with read permissions only. 

8 

Q17: Developer needs read-only access to repo. 
Answer: 

Q16: You need to apply the same commit to multiple repos. 

Answer: 

Q18: A submodule commit is missing in remote after cloning. 

Answer:

Grant Read

 Sample Points:

Example Code:

Example Code:

git format-patch -1 <commit>
git am < patchfile 

--recursive

git format-patch

ssh-keygen -t rsa -b 4096 -C "read-only" 

git am. 

git submodule update --init 



● 

● Push new branch, delete old one. 

● Update tracking branch config. 

● Inform collaborators. 

Example Code:

Bisect binary search speeds debugging. 

● Submodules need explicit init. 

● Recursive flag fetches nested submodules. 

● Keep submodules synced. 

Mark known good and bad commits, test each step. 

Sample Points:

Rename locally, push to remote, and delete old remote branch. 

Sample Points:

9 

--recursive. 

git branch -m old new
git push origin new
git push origin --delete old 

git clone --recursive repo.git 

SamplePoints: 

Answer: 

Answer: 

Example Code:

Q19: Need to rename a branch both locally and remotely. 

Q20: Git bisect required to find commit that introduced a bug. 



, run 

● Requires reproducible test. 

● Automate with 

● Sync updates local config. 

● Commit .gitmodules change. 

● Ensure URL works for CI. 

● Stash to free working dir quickly. 

● Pop restores + removes from stash. 

● Multiple stashes possible. 

 to save uncommitted work, apply hotfix, then 

, and commit changes. 

10 

 git stash

 .gitmodules

git bisect start
git bisect bad HEAD
git bisect good v1.1
 

git submodule sync --recursive 

gitbisect run. 

git submodule sync

git stash pop. 

Answer: 
Update
 Sample Points: 

Answer: 
Use
 Sample Points:

Example Code:

Example Code:

Example Code:

Q21: CI build fails because 

Q22: Need to temporarily stash changes for a quick hotfix. 

 points to wrong URL. .gitmodules



● 

● 

● 

Amend for local fix. 

Force push to update remote. 

Inform collaborators. 

● Rebasing avoids merge commits. 

● Cleaner history for review. 

● Conflicts resolved as usual. 

 to replay commits on top of fetched branch. 

. Force-push if already pushed. 

11 

 

git stash #
hotfix work
git stash pop
 

 git pull --rebase

git pull --rebase origin main 

 git commit --amend --author

git commit --amend --author="New Name <email>" 

Q25: Repo size is huge due to unused branches. 

Q24: You need to change the author of the last commit. 
Answer: 

Q23: Commit history is cluttered with merge commits from frequent syncs. 
Answer: 

Use
 Sample Points: 

Use
 Sample Points: 

Example Code:

Example Code:



Prune stale remote branches with 

Sample Points:

● Prune removes tracking refs. 

● Delete locals to free space. 

● Review before deleting. 

, delete local copies. 

12 

Answer: 

Example Code:

git fetch --prune
git branch -d old-branch 

git fetch --prune


