
● Confirm ALB health checks + backend port.

● Tune upstream/proxy timeouts and keep-alive.

● Scale on app backlog; cap max in-flight requests.

Use filename versioning (app.v2025-08-10.js) to avoid repeated invalidations. For this

hotfix, do a targeted CloudFront invalidation for the changed assets; set short TTL only for

Start with ALB target health and response codes. Correlate ALB TargetResponseTime and

HTTPCode_Target_5XX with EC2 CPU, connection counts, and app thread pool saturation.
502s usually mean backend closed or timed out; raise upstream timeouts (Nginx → app), bump
ulimit/file-descriptors, tune keep-alive, and enable connection reuse. Offload TLS at ALB;
ensure SG from ALB to instances is tight. Add an Auto Scaling policy on meaningful app metrics
(e.g., queue depth), not CPU alone.

1

Cloud Services — AWS (25 Questions)

Q1: Your production web app behind an ALB throws intermittent 502s
during traffic spikes. Debug and stabilize without resizing instances.

Q2: Static site on S3 + CloudFront shows stale JS after a hotfix; users still
see the buggy version. Push a safe, cost-aware fix.

Answer:

Answer:

Sample Points:

Example Code:

aws elbv2 describe-target-health --target-group-arn arn:...
aws cloudwatch get-metric-statistics --namespace AWS/ApplicationELB\
--metric-name TargetResponseTime --dimensions
Name=TargetGroup,Value=tg/...

● RDS Proxy pools connections.

● Constrain Lambda concurrency.

● Use IAM auth + Secrets Manager.

HTML (long TTL for hashed assets). Ensure
immutable on versioned assets.

● Versioned assets beat frequent invalidations.

● HTML short TTL; assets long TTL + immutable.

● Keep invalidation paths scoped.

 on HTML,

Introduce with IAM auth so concurrent Lambdas multiplex to fewer backend
connections. Set sensible max_connections_percent, reuse connections, and tune Lambda
concurrency (reserved concurrency) to cap surges. Rotate creds in Secrets Manager; block
public access to DB.

2

Cache-Control: no-cache

aws rds create-db-proxy --db-proxy-name prod-proxy --engine-family
POSTGRESQL \
--auth

'[{"IAMAuth":"REQUIRED","SecretArn":"arn:aws:secretsmanager:..."}]' \
--role-arn arn:aws:iam::123:role/RDSProxyRole

aws cloudfront create-invalidation --distribution-id E123ABC --paths\
"/index.html" "/assets/app.v2025-08-10.js"

Sample Points:

Sample Points:

Answer:
RDS Proxy

Example Code:

Example Code:

Q3: Lambda to RDS Postgres hits connection limits at peak. Fix without
upscaling DB.

● Tag-based ABAC on actions.

● Combine IAM + SCP for least privilege.

● Enforce tagging at create-time.

● NAT for generic egress; endpoints for AWS APIs.

● DNS Firewall/Network Firewall to constrain FQDNs.

● Artifact pulls via VPC endpoints (S3/ECR).

Use a permissions boundary or SCP for guardrails and attach an IAM policy with

on ec2:ResourceTag/App = Billing. Require the same tag on the instance

ec2:CreateTags on launch.
 enforce

Use a plus via Route 53 Resolver + DNS Firewall
or proxy via with FQDN-based rules. For strict domain egress, place a

/forward proxy in public subnet and point instances via http_proxy/https_proxy.

Endpoint policies for S3/ECR reduce public egress.

3

Q5: Multi-account org: a dev team must start/stop only EC2s tagged
App=Billing in their account. Enforce via IAM.

Q4: Private-subnet EC2s can’t reach the internet for OS updates, but egress
must be restricted by domain.

Answer:

Sample Points:

Example Code:

Example Code:

Answer:
NATGateway VPCegress-onlycontrols

AWS Network Firewall
Squid

Sample Points:

and

aws ec2 create-route --route-table-id rtb-... \
--destination-cidr-block 0.0.0.0/0 --nat-gateway-id nat-...

Condition

● OIDC + IRSA > node IAM roles.

● One role per SA for least privilege.

● Rotate by redeploying SA annotations.

Enable EKS OIDC provider, create IRSA roles with least-privilege policies, and annotate
service accounts per workload. Validate aws sts get-caller-identity inside pod.
Separate roles per namespace to limit blast radius.

Increase shard count (or enable on-demand), raise Lambda batch size/parallelization factor,

and enable enhanced fan-out if many consumers. Monitor iterator age. Prefer on-demand for

4

eksctl utils associate-iam-oidc-provider --cluster prod --approve
eksctl create iamserviceaccount --cluster prod --namespace orders\
--name ddb-writer --attach-policy-arn
arn:aws:iam::123:policy/DdbWrite --approve

{

"Effect":"Allow","Action":["ec2:StartInstances","ec2:StopInstances"],

"Resource":"*","Condition":{"StringEquals":{"ec2:ResourceTag/App":"Bil
ling"}}
}

Q7: Kinesis consumer lag spikes; records arrive late to downstream
Lambda. Triage and fix throughput without overpaying.

Q6: EKS pods need S3 read and DynamoDB write with zero static creds.
Design and wire it.

Answer:

Answer:

Sample Points:

Example Code:

● Usage plans for fair sharing.

● Cache hot GETs at API Gateway.

● Queue write-heavy paths.

● Watch GetRecords.IteratorAge.

● Batch/parallelization tuning first.

● Shard scaling vs on-demand cost trade-off.

bursty traffic; scale down shards post-peak if using provisioned.

Use and API keys to shape traffic per client, enable API cache for idempotent
reads, and offload async work to SQS. Add reserved concurrency per Lambda to isolate
tenants.

 (or Aurora reader), offload reporting there, and schedule data exports to

5

Sample Points:

Sample Points:

Answer:
usage plans

Answer:
Create a read replica

Example Code:

Example Code:

aws kinesis update-shard-count --stream-name orders
--target-shard-count 8 --scaling-type UNIFORM_SCALING

aws apigateway create-usage-plan --name prod-plan --throttle
burstLimit=200,rateLimit=100

Q9: RDS MySQL monthly reporting kills OLTP. Keep reports fast without
hurting prod.

Q8: API Gateway + Lambda returns 429 during promotions. Smooth it out
without lifting limits org-wide.

Store session/state in

● Separate OLTP and reporting traffic.

● Tune queries before scaling.

● Consider Athena for ad-hoc analytics.

● Prevent hot partitions via key sharding.

● On-demand for unpredictable traffic.

● DAX helps read latency, not writes.

 or

S3 + Athena when feasible. Tune long-running queries with proper indexes. If locking is the
issue, consider for elastic readers.

Adopt : use a composite key with a sharded partition key (e.g.,
tenant_id#shard_0..N) and distribute writes with a client-side hashing strategy. Enable

only if read-latency is the main issue; use on-demand capacity during spikes.

; front with

6

Answer:

Example Code:

Answer:
adaptive partitioning

DAX
Sample Points:

Example Code (write key):

Aurora Serverless v2
Sample Points:

DynamoDB Global Tables ElastiCache Global Datastore

pk = f"{tenant_id}#{hash(order_id)%8}"
table.put_item(Item={"pk": pk, "sk": order_id, ...})

aws rds create-db-instance-read-replica
--source-db-instance-identifier prod-db --db-instance-identifier
prod-db-ro

Q10: DynamoDB hot partition due to skewed

Q11: Cross-region, active-active API with Route 53. Ensure session affinity
and graceful failover for a stateful app.

. Stabilize latency. tenant_id

●

●

●

Externalize state for multi-region.

Latency routing + health checks.

Prefer stateless; sticky is a crutch.

● Combine bucket + endpoint policies.

● Tight KMS key policy; no wildcard principals.

● Enable Access Analyzer to validate.

, push with Sigstore cosign or ECR
to target accounts/regions. Enforce

 Use with aws:PrincipalOrgID/Principal restriction, VPC endpoint
requiring aws:sourceVpce, and enforce SSE-KMS with a key policy granting only the

role and bucket access. Block public access at account+bucket level.

 + health checks. Use sticky sessions only at the regional
. Enable circuit breakers in clients for brownouts.

7

Answer:
S3 bucketpolicy

policy

Sample Points:

Example Code:

Route 53 latency-based routing
ALB; primary solution is statelessfrontends
Sample Points:

Example Code (bucket policy excerpt):

Answer:
Enable ECR image scanning, image tag immutability

pull-through cache. Replicate with ECR replication rules

{"Condition":{"StringEquals":{"aws:sourceVpce":"vpce-abc"}}}

aws route53 change-resource-record-sets --hosted-zone-id Z123
--change-batch file://latency.json

Q12: S3 bucket hosts PII exports. Data must be readable only from two
VPCs and by a specific AWS account’s role.

Q13: You must rotate ECR images across accounts with provenance and
immutability.

● Immutable tags prevent “latest” drift.

● Replication rules automate fan-out.

● Verify signatures at deploy time.

● DLQ protects consumers.

● Visibility timeout must exceed processing.

● Scale consumers on queue depth.

 digests only via CI and admission controllers (EKS).

Use with redrive policy; set > max processing time. Implement
idempotency and retries with backoff. Scale ECS service by

and cap with service autoscaling. Add message
validation before processing.

8

deployment on signed
Sample Points:

Example Code:

Example Code:

Answer:
DLQ visibilitytimeout

ApproximateNumberOfMessagesVisible

Sample Points:

aws ecr put-image-tag-mutability --repository-name app
--image-tag-mutability IMMUTABLE
aws ecr put-replication-configuration --replication-configuration
file://replication.json

aws sqs set-queue-attributes --queue-url $Q \
--attributes
RedrivePolicy='{"deadLetterTargetArn":"arn:...:dlq","maxReceiveCount":
"5"}'

Q14: SQS queue backlog grows; consumers on ECS Fargate occasionally
crash on poison messages.

OIDC token.

● Decouple with SQS.

● Use Glue for heavy transforms.

● Idempotency + retries.

● Web identity federation for CI.

● Least-privilege ECS/ECR/Logs actions.

● Explicit deny for console paths.

 Use to enqueue to SQS, trigger a that launches
increase Lambda timeout or split big files with
transforms, move logic into Glue (Spark) instead of Lambda. Add
duplicate processing.

 with OIDC federation (GitHub/GitLab) and scoped policies:
, , . Deny
=false to block console usage, and condition on repo/branch claims in

 asynchronously;
. For very large

to avoid

9

Q15: Event-driven ETL: S3 → Lambda → Glue. Random timeouts on big
CSVs. Make it resilient.
Answer:

Q16: You need fine-grained access for CI runners to deploy to ECS, but
prohibit console access.
Answer:

S3 event

Sample Points:

SamplePoints:

Create a role for CI

Example Code:

Example Code:

Lambda Gluejob
S3 Multipart + manifest

idempotency token

aws glue start-job-run --job-name etl
--arguments='--s3key=s3://bucket/key.csv'

ecs:UpdateService ecr:GetAuthorizationToken logs:CreateLogStream
aws:ViaAWSService

"Condition":{"StringEquals":{"token.actions.githubusercontent.com:sub"
:"repo:org/app:ref:refs/heads/main"}}

● Two target groups, one service.

● Canary/linear shift patterns.

● Hooks for validation + rollback.

● Reduce at source; don’t ship noise.

● Short retention, archive to S3.

● Metrics > logs for steady alerts.

Use with an ALB target group pair. Configure canary or linear traffic shifting and
pre/post hooks for smoke tests. Roll back on health check failures automatically.
SamplePoints:

 Add at agent (Fluent Bit) to drop debug in prod, route metrics with EMF instead of
logs, enable (14–30 days) + subscription filters to S3 for archival, and
compress in S3 IA. Use for alerts instead of scanning logs.

10

Q18: CloudWatch costs are growing due to verbose app logs. Keep
observability but reduce spend.
Answer:

Q17: Blue/Green for ECS with zero-downtime + HTTP checks + gradual
traffic shift.

Answer:
 CodeDeploy

Example Code:

log filters
log retention

metric filters
SamplePoints:

ExampleCode(AppSpecexcerpt):

aws logs put-retention-policy --log-group-name /app/prod
--retention-in-days 14

{"Resources":[{"TargetService":{"Type":"AWS::ECS::Service","Properties
":{"TaskDefinition":"<td>"}}}]}

● HTTP API + VPC Link to ALB.

● Centralized auth + throttling.

● Lock down SG to VPC Link ENIs.

● Spread across 3 AZs by default.

● Replace EBS single-AZ state with EFS/Aurora.

● Health checks per AZ for fast failover.

 with VPC Link to the ALB target group. Attach JWT
per route, and restrict ALB SG to only the VPC Link ENIs.

 across 3 AZs with EFS for shared state (if POSIX fits) or move
RDS/EFS and distribute ALB targets across AZs. For

with automatic failover.

11

Q19: You must expose an internal ALB via API Gateway for standardized
auth and throttling.
Answer:

Q20: A single AZ outage took down your stateful workload on EBS. Add HA
with minimal refactor.
Answer:

Example Code:

Example Code:

Deploy API Gateway HTTP API
authorizer/Cognito, apply throttle
Keep idle timeouts aligned.
Sample Points:

Convert to Auto Scaling group
to Aurora for database. Use multi-AZ
caches, use ElastiCache Multi-AZ
Sample Points:

aws apigatewayv2 create-vpc-link --name prod-link --subnet-ids
subnet-...

aws autoscaling create-auto-scaling-group --availability-zones a,b,c
...

● Instance role + SSM agent required.

● Use interface endpoints in private VPC.

● No inbound SSH needed.

● Scope-down limits inspection cost/latency.

● Start in count mode; then block.

● Rate-based to resist credential stuffing.

Attach to CloudFront and scope rules with +
use to match the specific URIs so other paths aren’t inspected.
Monitor with sampled requests before enforcing.

12

Attach role to the instance, ensure SSM agent is running,
allow egress to SSM endpoints via (ssm, ec2messages, ssmmessages), and
block SSH in SG. Verify IAM user permissions for Session Manager.

Q22: WAF needed only for
perf high and rules cheap.

 and paths on CloudFront. Keep

Q21: SSM Session Manager to private EC2 fails; SSH bastion is forbidden.
Fix secure access quickly.

Sample Points:

Example Code:

Answer:
AWS WAF

scope-down statements

SamplePoints:

Answer:
AmazonSSMManagedInstanceCore

VPC endpoints

ExampleCode(scope-downJSONexcerpt):

rate-based managedrulegroups;

aws ec2 create-vpc-endpoint --vpc-endpoint-type Interface
--service-name com.amazonaws.ap-south-1.ssm ...

/login /api/*

● Partition on date or tenant.

● Convert to Parquet to cut cost.

● Lifecycle transitions for cold data.

Land logs in S3 with (

 with partitioned_by, run
days in Standard → IA; 180 days to Glacier. Use
faster/cheaper scans.

Check VPC Flow Logs to see which subnets/instances egressed most. Move
S3/ECR/DynamoDB to VPC endpoints, route third-party pulls through a proxy with caching,
and consolidate outbound to a single NAT per AZ (no cross-AZ). Educate teams on avoiding
public package mirrors when private mirrors exist.

), create an Athena external
or use Glue crawler. Lifecycle: 30

to write optimized Parquet for

13

dt=YYYY-MM-DD

CREATE EXTERNAL TABLE logs(
level string, msg string, ts string

) PARTITIONED BY (dt string)
ROW FORMAT SERDE 'org.openx.data.jsonserde.JsonSerDe'
LOCATION 's3://bucket/logs/';

"Statement":{"ByteMatchStatement":{"SearchString":"/login","FieldToMat
ch":{"UriPath":{}},"TextTransformations":[{"Priority":0,"Type":"NONE"}
],"PositionalConstraint":"STARTS_WITH"}}

Q23: S3 inventory team needs Athena queries over JSON logs with
partitioning and lifecycle control.

Q24: Cost anomaly: NAT Gateway data processing exploded last week.
Contain and prevent repeat.

Answer:

table

Answer:

Sample Points:

Sample Points:

Example Code (DDL):

Hive-style partitions
MSCKREPAIR TABLE

CTAS

●

●

●

at the account level via

,
aggregation. Auto-remediate with

● Replace public AWS egress with endpoints.

● AZ-aligned NAT to avoid cross-AZ charges.

● Cache/proxy dependency downloads.

SCP + Block Public Access = hard guardrail.

AWS Config for continuous detection.

Automation doc for remediation.

 that grant public access, enable
defaults, and set Config rules

) with
.

14

Answer:
Use SCPs denying
Block PublicAccess
(
Security Hub
 Sample Points:

Example Code:

Example Code:

Organization

SSM Automation

aws organizations attach-policy --policy-id p-abcdefgh --target-id
<account-id>
aws config put-config-rule --config-rule
file://s3-public-read-prohibited.json

PutBucketAcl/PutBucketPolicy

s3-bucket-public-read-prohibited s3-bucket-public-write-prohibited

aws ec2 create-vpc-endpoint --vpc-endpoint-type Gateway --service-name
com.amazonaws.ap-south-1.s3 ...

Q25: You’re asked to enforce org-wide “no public S3 buckets” and detect
drift automatically.

